

REPORT DATE

COUNTRY CODE BR

ORDERED TEST #

ABOUT THE TEST FoundationOne®CDx is a next-generation sequencing (NGS) based assay that identifies genomic findings within hundreds of cancer-related genes.

- PATIENT DISEASE Lung adenocarcinoma NAME DATE OF BIRTH SEX MEDICAL RECORD #
- ORDERING PHYSICIAN PHYSICIAN MEDICAL FACILITY ADDITIONAL RECIPIENT MEDICAL FACILITY ID PATHOLOGIST

- SPECIMEN SPECIMEN SITE SPECIMEN ID
 - SPECIMEN TYPE
 - DATE OF COLLECTION
 - SPECIMEN RECEIVED

Biomarker Findings

Microsatellite status - MS-Equivocal^{*a*} Tumor Mutational Burden - 0 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

ERBB2 G776>VC CCND1 amplification MEN1 D423N - subclonal[†] **MYC** amplification CDKN2A/BCDKN2B loss, CDKN2A loss FGF19 amplification FGF3 amplification FGF4 amplification TP53 P191fs*56

7 Disease relevant genes with no reportable alterations: ALK, BRAF, EGFR, KRAS, MET, RET, ROS1

† See About the Test in appendix for details.

 α Patients with Microsatellite status of MS-Equivocal should be retested with an orthogonal (alternative) method.

Report Highlights

- Targeted therapies with NCCN categories of evidence in this tumor type: Ado-trastuzumab emtansine (p. 13), Famtrastuzumab deruxtecan (p. 11)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 15)

BIOMARKER FINDINGS

Microsatellite status - MS-Equivocal

Tumor Mutational Burden - 0 Muts/Mb

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. See Biomarker Findings section

No therapies or clinical trials. See Biomarker Findings section

COUNTRY CODE

BR

ORDERED TEST #

GENOMIC FINDINGS	THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)
ERBB2 - G776>VC	Fam-trastuzumab deruxtecan	Ado-trastuzumab emtansine
	Afatinib	Neratinib
	Dacomitinib	Trastuzumab
10 Trials see p. <u>17</u>		Trastuzumab + Pertuzumab
CCND1 - amplification	none	none
7 Trials see p. <u>15</u>		
MEN1 - D423N - subclonal	none	none
7 Trials see p. <u>19</u>		
MYC - amplification	none	none
7 Trials see p. <u>21</u>		
	<i>Limited evidence showing variant(s)</i> <i>in this sample may confer resistance</i> <i>to this therapy</i>	NCCN category

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

CDKN2A/B - CDKN2B loss, CDKN2A lossp. 7	FGF4 - amplificationp. 9
FGF19 - amplification p. 8	<i>TP53</i> - P191fs*56p. <u>10</u>
FGF3 - amplification p. 8	

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and exhaustive. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies.

Therapies contained in this report may have been approved by the US FDA.

BIOMARKER FINDINGS

ORDERED TEST #

biomarker Microsatellite status

RESULT MS-Equivocal

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

On the basis of prospective clinical evidence in multiple solid tumor types, microsatellite instability (MSI) and associated increased tumor mutational burden (TMB)¹⁻² may predict sensitivity to immune checkpoint inhibitors, including the approved PD-1-targeting agents cemiplimab, dostarlimab, nivolumab (alone or in combination with ipilimumab), and pembrolizumab³⁻⁹, as well as PD-L1-targeting agents atezolizumab, avelumab, and durvalumab¹⁰⁻¹². The efficacy of immune checkpoint inhibitors to treat MS-Equivocal cancers has not been investigated in published studies. Whereas 1 study reported that

microsatellite instability-low (MSI-L) tumors, like microsatellite stable (MSS) tumors, have significantly lower expression of a gene signature indicative of immune response compared with microsatellite instability-high (MSI-H) tumors², data directly comparing the efficacy of anti-PD-1 immunotherapies in MSI-H and MSI-L tumors are lacking. Therefore, the relevance of these approaches for MSI-L tumors is unclear.

FREQUENCY & PROGNOSIS

MSI-H is generally infrequent in NSCLC, reported in fewer than 1% of samples across several large studies¹³⁻¹⁸, whereas data on the reported incidence of MSI-H in SCLC has been limited and conflicting¹⁹⁻²². One study reported MSI-H in lung adenocarcinoma patients with smoking history, and 3 of 4 MSI-H patients examined also had metachronous carcinomas in other organs, although this has not been investigated in large scale studies¹³. Published data investigating the prognostic implications of MSI in NSCLC are limited (PubMed, Oct 2022).

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor²³. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH2, MSH6, or PMS2²³⁻²⁵. This sample has been characterized to have an equivocal microsatellite status (MS-Equivocal), harboring more instability than microsatellite-stable tumors but less than MSI-high cases. This may represent an MSI-low (MSI-L) tumor: one with mutations in at least 1 but <30% of microsatellite markers²⁶⁻²⁸. MSI-L status indicates low-level deficiency in MMR, also known as a "mild mutator" phenotype^{23,27-29}. However, MS-Equivocal status is not identical to the clinical definition of MSI-L. Depending on the clinical context, MSI testing by another methodology could be considered.

Tumor Mutational Burden

RESULT 0 Muts/Mb

POTENTIAL TREATMENT STRATEGIES — Targeted Therapies —

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1³⁰⁻³², anti-PD-1 therapies³⁰⁻³³, and combination nivolumab and ipilimumab34-39. Multiple clinical trials of PD-1- or PD-L1-targeting immune checkpoint inhibitors or combination of PD-1 and CTLA-4 inhibitors in NSCLC have reported that patients with tumors harboring TMB ≥10 Muts/Mb derive greater clinical benefit from these therapies than those with TMB <10 Muts/ Mb (based on this assay or others); similarly, higher efficacy of anti-PD-1 or anti-PD-L1 immunotherapy for treatment of patients with NSCLC, compared with the use of chemotherapy, has been observed more significantly in cases of TMB ≥10 Muts/Mb (based on this assay or others);8,30-31,34-36,40-46. Improved OS of patients with NSCLC treated with pembrolizumab plus chemotherapy relative to chemotherapy only⁴⁷, or those treated with nivolumab plus ipilimumab also relative to

chemotherapy $^{\rm 48}$, has been observed across all TMB levels.

FREQUENCY & PROGNOSIS

PATIENT

A large-scale genomic analysis found that unspecified lung non-small cell lung carcinoma (NSCLC), lung adenocarcinoma, and lung squamous cell carcinoma (SCC) samples harbored median TMBs between 6.3 and 9 Muts/Mb, and 12% to 17% of cases had an elevated TMB of greater than 20 Muts/Mb⁴⁹. Lower TMB is observed more commonly in NSCLCs harboring known driver mutations (EGFR, ALK, ROS1, or MET) with the exception of BRAF or KRAS mutations, which are commonly observed in elevated TMB cases⁵⁰. Although some studies have reported a lack of association between smoking and mutational burden in NSCLC⁵¹⁻⁵², several other large studies did find a strong association with increased TMB⁵³⁻⁵⁶. TMB >10 muts/Mb was found to be more frequent in NSCLC metastases compared with primary tumors for both adenocarcinoma (38% vs. 25%) and SCC (41% vs. 35%) subtypes $^{57}\!\!.$ A meta-analysis of 19 studies of immune checkpoint inhibitor-treated NSCLC (n = 2,315 patients) demonstrated that high TMB predicted a significantly longer OS than low TMB (HR = 0.70), and within the high TMB group, immunotherapy was associated with an improved PFS (HR = 0.62, P<0.001), OS (HR = 0.67, P<0.001) and a higher response rate (OR = 2.35, P<0.001) compared to chemotherapy⁵⁸. In contrast, a large study of Chinese patients with untreated lung

TUMOR TYPE Lung adenocarcinoma

BIOMARKER FINDINGS

adenocarcinoma reported a shorter median OS for tumors with a higher number of mutations in a limited gene set compared with a lower mutation number (48.4 vs. 61.0 months)⁵¹. Another study of patients with NSCLC treated with EGFR inhibitors or platinum doublet chemotherapy found elevated TMB to be correlated with poorer prognosis, as well as finding lower TMB in combination with PD-L1 negative status to be significantly associated with longer median survival in patients with lung adenocarcinoma⁵⁹. However, no significant prognostic association of TMB and/or PD-L1 status with survival has been reported in patients with lung SCC⁵⁹⁻⁶⁰.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma⁶¹⁻⁶² and cigarette smoke in lung cancer^{8,63}, treatment with temozolomide-based chemotherapy in glioma⁶⁴⁻⁶⁵, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes⁶⁶⁻⁷⁰, and microsatellite instability (MSI)66,69-70. This sample harbors a TMB below levels that would be predicted to be associated with sensitivity to PD-1or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents^{8,30-31,34-36,40-46,71}.

GENE ERBB2

ALTERATION G776>VC

TRANSCRIPT ID NM 004448.2 CODING SEQUENCE EFFECT

2326 2327insTGT

VARIANT CHROMOSOMAL POSITION chr17:37880997

VARIANT ALLELE FREQUENCY (% VAF) 39.1%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

On the basis of extensive clinical evidence, ERBB2 amplification or activating mutation may predict sensitivity to therapies targeting HER2, including antibodies such as trastuzumab⁷²⁻⁷⁷, pertuzumab in combination with trastuzumab74,78-80, and zanidatamab (ZW25)⁸¹, as well as antibody-directed conjugates such as ado-trastuzumab emtansine (T-DM1)82 and fam-trastuzumab deruxtecan (T-DXd)83-85, HER2 kinase inhibitors such as tucatinib⁸⁶⁻⁸⁹, and dual EGFR/HER2 kinase inhibitors such as lapatinib⁹⁰⁻⁹⁸, afatinib^{77,99-108}. neratinib¹⁰⁹⁻¹¹², dacomitinib¹¹³, and pyrotinib¹¹⁴⁻¹¹⁵. HER2 antibody drug conjugates trastuzumab emtansine¹¹⁶ and trastuzumab deruxtecan have

elicited ORRs of 44-55% among patients with ERBB2-mutated non-small cell lung cancer (NSCLC), including for patients with ERBB2 exon 20 insertions⁸⁵. Tyrosine kinase inhibitors have demonstrated efficacy for patients with HER2 exon 20 insertions including poziotinib (ORR 27-28%)¹¹⁷⁻¹¹⁸ and pyrotinib (ORR 30-53%)¹¹⁹⁻¹²⁰. Other kinase inhibitors have been evaluated for patients with NSCLC harboring exon 20 insertions including afatinib (ORR 8-17%)¹⁰⁴⁻¹⁰⁷, dacomitinib (ORR 12%)¹¹³, and neratinib (ORR 4%)¹¹¹.

Potential Resistance

Clinical and preclinical data suggest that ERBB2 exon 20 insertions confer resistance to lapatinib and reduced sensitivity to afatinib, dacomitinib, and neratinib^{77,105-106,111,113,121-126}. However, it is unclear if ERBB2 exon 20 insertions confer reduced sensitivity to lapatinib in combination with other therapies, such as trastuzumab.

FREQUENCY & PROGNOSIS

ERBB2 mutations have been reported in 2.2-4.2% of lung adenocarcinomas and lung squamous cell carcinomas across several genomic studies^{43,55,127-130}. Exon 20 insertions are the most frequently observed ERBB2 alteration in lung adenocarcinomas, representing 61% (72/118) to 96% (24/25) of ERBB2 mutations detected^{107,131}. One large study of 20,656 patients with non-small cell lung cancer reported 24% of ERBB2 mutations were exon 20 insertions¹³². Of ERBB2 exon 20

GENE CCND1

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

Amplification or overexpression of CCND1 may predict sensitivity to CDK4/6 inhibitors, such as abemaciclib, palbociclib, and ribociclib143-148, although as monotherapy these agents have shown limited activity in tumor types other than breast cancer^{147,149}. In refractory advanced solid tumors

with CCND1 (n=39) or CCND3 (n=1) amplification and retinoblastoma protein expression, palbociclib resulted in SD for 39% (14/36) of patients and a median PFS of 1.8 months in the NCI-MATCH trial¹⁵⁰; 4 patients (13%, 4/36 overall) with squamous cell carcinomas (lung, esophageal, or laryngeal) or adenoid cystic carcinoma experienced prolonged SD in this study¹⁵⁰. Among 9 patients with CCND1-amplified advanced solid tumors, 1 patient with bladder cancer responded to ribociclib in a Phase 2 trial¹⁵¹.

FREQUENCY & PROGNOSIS

CCND1 amplification has been reported in 2-25% of lung adenocarcinoma^{55,128,152-153} and 6-38% of lung squamous cell carcinoma130,152-153 cases.

Expression of cyclin D1 has been reported in 59% (36/61) of non-small cell lung cancer (NSCLC) tumors analyzed¹⁵⁴. The prognostic significance of CCND1 amplification in NSCLC is not clear¹⁵⁵. Cyclin D1 protein expression was not associated with clinicopathologic parameters of NSCLC in one studv¹⁵⁴.

FINDING SUMMARY

CCND1 encodes cyclin D1, a binding partner of the kinases CDK4 and CDK6, that regulates RB activity and cell cycle progression. Amplification of CCND1 has been positively correlated with cyclin D1 overexpression¹⁵⁶ and may lead to excessive proliferation157-158.

GENOMIC FINDINGS

P780_Y781insGSP (9-11%) and G776>VC (8-11%)^{106-107,124,131}. Exon 20 insertion mutations are more prevalent in adenocarcinoma histology¹⁰⁶ and are generally mutually exclusive with other common driver alterations in NSCLC¹³¹. HER2 overexpression has been documented in 11-32% of NSCLC cases, and is generally reported more frequently in non-squamous histologies¹³³⁻¹³⁴. Expression of HER2 has generally been associated with poor prognosis in NSCLC in several studies¹³⁵⁻¹³⁹. In a retrospective study of patients with ERBB2-mutated NSCLC who were treated with afatinib, A775_G776insYVMA predicted inferior PFS when compared with other exon 20 insertions (HR = 0.009) or missense mutations (HR = 0.184), whereas P780_Y781insGSP and G776>VC were associated with improved PFS compared with missense mutations (HR = 0.050)107.

insertions in NSCLC, A775_G776insYVMA is the

FINDING SUMMARY

TUMOR TYPE

Lung adenocarcinoma

most common (42-85%), followed by

ERBB2 (also known as HER2) encodes a receptor tyrosine kinase which is in the same family as EGFR. ERBB2 exon 20 insertion mutations, such as observed here, are predicted to be activating^{123-124,140-142}. The mutation seen here is similar to G776>VC (also known as G776_V777>VCV, G776delinsVC, or G776_V777delinsVCV)124.

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

GENOMIC FINDINGS

ORDERED TEST #

gene MEN1

ALTERATION D423N - subclonal TRANSCRIPT ID NM_130801.2 CODING SEQUENCE EFFECT 1267G>A

VARIANT CHROMOSOMAL POSITION chr11:64572604

VARIANT ALLELE FREQUENCY (% VAF) 1.2%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

There are no therapies, either approved or in clinical trials, that directly target mutation or loss of MEN1. Preclinical studies in cells and transgenic mice have shown that tumor formation mediated by loss of MEN1 (a direct activator of p18INK4c) is associated with increased expression and activity

gene MYC

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -Limited clinical data indicates that MYC activation may predict sensitivity to the pan-MYC inhibitor OMO-103; a Phase 1 study for patients with solid tumors reported 7 SDs (n=18), including 8% tumor reduction in a patient with pancreas adenocarcinoma¹⁸⁵. Preclinical data indicate MYC overexpression may predict sensitivity to investigational agents targeting CDK1¹⁸⁶⁻¹⁸⁷, CDK2¹⁸⁸, Aurora kinase A¹⁸⁹⁻¹⁹⁶, Aurora kinase B¹⁹⁷⁻²⁰⁰, glutaminase²⁰¹⁻²⁰⁴, or BET bromodomaincontaining proteins²⁰⁵⁻²⁰⁸, as well as agents targeting both HDAC and PI3K²⁰⁹⁻²¹¹. Exploratory of CDK4 and that CDK4 knockout abrogates formation of MEN1 loss-driven tumors¹⁵⁹⁻¹⁶². Therefore, tumors with MEN1 loss or inactivation may be sensitive to CDK4/6 inhibitors, such as ribociclib, abemaciclib, and palbociclib¹⁴⁴⁻¹⁴⁷, although this has not been demonstrated clinically.

FREQUENCY & PROGNOSIS

MEN1 mutations have been reported in 0.4-1.6% of lung adenocarcinomas^{54-55,128} and 4% of lung squamous cell carcinomas¹³⁰. Decreased Menin expression has been reported in 23% of lung adenocarcinoma cases and linked with lymph node metastasis¹⁶³. MEN1 has been suggested to act as a tumor suppressor in non-small cell lung cancer (NSCLC)¹⁶³⁻¹⁶⁶.

FINDING SUMMARY

MEN1 encodes menin, a tumor suppressor associated with a histone methyltransferase complex that regulates developmental gene expression via chromatin remodeling¹⁶⁷. Alterations such as seen here may disrupt MEN1 function or expression¹⁶⁸⁻¹⁷³.

POTENTIAL GERMLINE IMPLICATIONS

One or more of the MEN1 variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with multiple endocrine neoplasia type 1 syndrome (ClinVar, Sep 2022)¹⁷⁴⁻¹⁸⁰. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline mutations in MEN1 are associated with multiple endocrine neoplasia (MEN1) syndrome, an autosomal dominant hereditary cancer syndrome characterized most commonly by pancreatic endocrine tumors (in 40-70% of patients), pituitary adenomas (in 30-40% of patients), and parathyroid adenomas¹⁸¹⁻¹⁸². In addition, a small subset of breast cancers may be associated with germline MEN1 mutation¹⁸²⁻¹⁸³. Prevalence for this disorder in the general population is estimated to be 1:30,000¹⁸⁴, and in the appropriate clinical context, germline testing of MEN1 is recommended.

biomarker analysis in a Phase 2 study reported a PFS benefit associated with a combination of the Aurora A kinase inhibitor alisertib and paclitaxel as second-line therapy for patients with MYCoverexpressed small cell lung cancer, but not for patients without MYC overexpression²¹². A PR was reported for a patient with MYC-amplified invasive ductal breast carcinoma treated with an unspecified Aurora kinase inhibitor and taxol²¹³.

- Nontargeted Approaches -

MYC amplification has also been suggested to predict response to chemotherapy in patients with breast cancer in some studies²¹⁴⁻²¹⁵. Preclinical evidence suggests that colon cancer cells with MYC amplification may be more sensitive to 5-fluorouracil and paclitaxel²¹⁶⁻²¹⁷.

FREQUENCY & PROGNOSIS

MYC amplification has been reported in 10-50% of non-small cell lung cancer (NSCLC) samples,

including adenocarcinoma and/or squamous cell carcinoma subtypes²¹⁸⁻²²². In the Lung Adenocarcinoma TCGA and Lung Squamous Cell Carcinoma TCGA datasets, putative MYC amplification has been reported in 9% and 4.5% of cases, respectively^{128,130}. MYC amplification has been associated with metastasis in NSCLC, as well as with poor prognosis in early stage lung adenocarcinoma specifically²¹⁸⁻²²¹.

FINDING SUMMARY

MYC (c-MYC) encodes a transcription factor that regulates many genes related to cell cycle regulation and cell growth. It is an oncogene and may be activated in as many as 20% of cancers²²³. MYC dysregulation (amplification, overexpression, translocation) has been identified in a number of different cancer types²²⁴. MYC amplification has been significantly linked with increased mRNA and protein levels and results in the dysregulation of a large number of target genes^{223,225-226}.

© 2023 Foundation Medicine, Inc. All rights reserved. Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

GENOMIC FINDINGS

ORDERED TEST #

GENE CDKN2A/B

ALTERATION CDKN2B loss, CDKN2A loss

POTENTIAL TREATMENT STRATEGIES — Targeted Therapies —

Preclinical data suggest that tumors with loss of p16INK4a function may be sensitive to CDK4/6 inhibitors, such as abemaciclib, ribociclib, and palbociclib²²⁷⁻²³⁰. Clinical data in mesothelioma, breast cancer, and uterine leiomyosarcoma indicate that CDKN2A loss may predict sensitivity to abemaciclib²³¹ and palbociclib treatment²³²⁻²³³. However, multiple other clinical studies have shown no significant correlation between p16INK4a loss or inactivation and therapeutic benefit of these agents^{145-146,151,234-237}; it is not known whether CDK4/6 inhibitors would be beneficial in this case. Although preclinical studies have suggested that loss of p14ARF function may be associated with reduced sensitivity to MDM2 inhibitors²³⁸⁻²³⁹, the clinical relevance of p14ARF as a predictive biomarker is not clear. Because the p15INK4b protein encoded by CDKN2B is known to inhibit CDK4, tumors with CDKN2B mutation or loss may predict sensitivity to CDK4/6 inhibitors, such as ribociclib, abemaciclib, and

palbociclib144-145,151,236,240-241.

FREQUENCY & PROGNOSIS

CDKN2A/B loss and CDKN2A mutation have been reported in approximately 19% and 4% of lung adenocarcinomas, respectively¹²⁸. CDKN2A/B loss and CDKN2A mutation have been reported in 26% and 17% of lung squamous cell carcinoma (SCC) samples analyzed in the TCGA dataset, respectively¹³⁰. Loss of p16INK4a protein expression, through CDKN2A mutation, homozygous deletion, or promoter methylation, has been described in 49-68% of non-small cell lung cancer (NSCLC) samples, whereas low p14ARF protein expression has been detected in 21-72% of NSCLC samples^{130,242-247}. In patients with lung SCC, loss of CDKN2B associated with poor survival in one study²⁴⁸. Loss of p16INK4a protein as well as CDKN2A promoter hypermethylation correlate with poor survival in patients with NSCLC^{244,249-251}.

FINDING SUMMARY

CDKN2A encodes two different, unrelated tumor suppressor proteins, p16INK4a and p14ARF, whereas CDKN2B encodes the tumor suppressor p15INK4b²⁵²⁻²⁵³. Both p15INK4b and p16INK4a bind to and inhibit CDK4 and CDK6, thereby maintaining the growth-suppressive activity of the Rb tumor suppressor; loss or inactivation of either p15INK4b or p16INK4a contributes to dysregulation of the CDK4/6-cyclin-Rb pathway and loss of cell cycle control^{243,254}. The tumor suppressive functions of p14ARF involve stabilization and activation of p53, via a mechanism of MDM2 inhibition²⁵⁵⁻²⁵⁶. One or more alterations observed here are predicted to result in p16INK4a loss of function²⁵⁷⁻²⁷⁸. One or more alterations seen here are predicted to result in p14ARF loss of function^{261,278-281}. CDKN2B alterations such as seen here are predicted to inactivate p15INK4b²⁸².

POTENTIAL GERMLINE IMPLICATIONS

Germline CDKN2A mutation is associated with melanoma-pancreatic cancer syndrome, a condition marked by increased risk of developing malignant melanoma and/or pancreatic cancer²⁸³. Mutation carriers within families may develop either or both types of cancer, and melanoma cases may be referred to as familial or hereditary melanoma²⁸⁴⁻²⁸⁵. CDKN2A is the most implicated gene in familial melanoma, with germline mutations present in 16% to 20% of familial melanoma cases²⁸⁶⁻²⁸⁸. CDKN₂A alteration has also been implicated in familial melanoma-astrocytoma syndrome, an extremely rare tumor association characterized by dual predisposition to melanoma and nervous system tumors²⁸⁹⁻²⁹¹. In the appropriate clinical context, germline testing of CDKN2A is recommended.

^{gene} FGF19

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

A Phase 1 study of the FGFR4 inhibitor fisogatinib (BLU-554) for patients with advanced hepatocellular carcinoma (HCC) reported a 17% ORR (11/66, 1 CR, ongoing for >1.5 years) and 3.3-month PFS for FGF19 IHC-positive patients; patients with negative or unknown FGF19 IHC scores experienced poorer outcomes (o% ORR, 2.3-month PFS)²⁹². A Phase 1/2 study evaluating another FGFR4 inhibitor, FGF401, demonstrated an ORR of 7.5% (4/53) and SD rate of 53% (28/53) for patients with HCC²⁹³. A Phase 1 study of the FGFR4 inhibitor H3B-6527 reported a 17% ORR (OS of 10.3 months, 46% clinical benefit rate) among patients with HCC; enrollment of patients with intrahepatic cholangiocarcinoma (ICC) was suspended due to efficacy²⁹⁴. A retrospective analysis reported that 50% (2/4) of patients with HCC harboring FGF19 amplification experienced a CR to sorafenib²⁹⁵, though another retrospective study found patients with higher pretreatment serum levels of FGF19 experienced reduced benefit from sorafenib compared with those with lower serum FGF19 (PFS of 86 vs. 139 days, OS of 353 vs. 494 days); no difference was observed for lenvatinib296. A patient with head and neck squamous cell carcinoma (HNSCC) with 11q13 (FGF3, FGF4, FGF19) and 12p13 (FGF6 and FGF23) amplification experienced a CR lasting 9 months from a pan-FGFR inhibitor²⁹⁷.

FREQUENCY & PROGNOSIS

For patients with solid tumors, FGF19 amplification has been reported most frequently in breast cancer (17%), head and neck cancer (12%), lung squamous cell carcinoma (SCC; 12%), and urothelial carcinoma cancer (11%)^{130,298-299}. FGF19 mutations are rare in solid tumors²⁹⁸. FGF19 expression or amplification has been associated with poor prognosis in hepatocellular carcinoma (HCC)³⁰⁰⁻³⁰¹, and in prostate cancer following radical prostatectomy³⁰². Studies suggest FGF19 expression may also be a poor prognostic indicator in head and neck squamous cell carcinoma (HNSCC)³⁰³ and lung SCC³⁰⁴.

FINDING SUMMARY

TUMOR TYPE

Lung adenocarcinoma

FGF19 encodes fibroblast growth factor 19, an FGFR4 ligand involved with bile acid synthesis and hepatocyte proliferation in the liver³⁰⁵⁻³⁰⁶. FGF19 lies in a region of chromosome 11q13 that also contains FGF3, FGF4, and CCND1; this region is frequently amplified in a diverse range of malignancies³⁰⁷. Correlation between FGF19 amplification and protein expression has been reported in hepatocellular carcinoma (HCC)³⁰⁸, lung squamous cell carcinoma^{304,309}, and head and neck squamous cell carcinoma (HNSCC)³⁰³, but was not observed in other cancers^{296,310}.

gene FGF3

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

There are no targeted therapies that directly address genomic alterations in FGF3. Inhibitors of FGF receptors, however, are undergoing clinical trials in a number of different cancers. Limited data suggest that pan-FGFR inhibitors show activity in FGF amplified cancers; following treatment with a selective pan-FGFR inhibitor, a patient with head and neck squamous cell carcinoma (HNSCC) and amplification of 11q13 (FGF3, FGF4, FGF19) and 12p13 (FGF6 and FGF23) experienced a radiologic CR³¹¹.

FREQUENCY & PROGNOSIS

FGF3 lies in a region of chromosome 11q13 that also contains FGF19, FGF4, and CCND1, the latter gene encoding cyclin D1, a key regulator of cell cycle progression. This chromosomal region is frequently amplified in a diverse range of malignancies¹⁵⁷.

FINDING SUMMARY

FGF3 encodes fibroblast growth factor 3, a growth factor that plays a central role in development of the inner ear. Germline mutations in FGF3 give rise to an autosomal recessive syndrome characterized by microdontia, deafness, and complete lack of inner ear structures³¹².

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | www.rochefoundationmedicine.com © 2023 Foundation Medicine, Inc. All rights reserved.

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

GENOMIC FINDINGS

TUMOR TYPE Lung adenocarcinoma

GENOMIC FINDINGS

ORDERED TEST #

gene FGF4

ALTERATION amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

FGF4 amplification and overexpression was associated with cell sensitivity to the multikinase inhibitor sorafenib in preclinical studies³¹³⁻³¹⁴ and amplification of FGF4/FGF3 in HCC significantly correlated with patient response to sorafenib (p=0.006)³¹³. Limited data suggest that pan-FGFR inhibitors show activity in FGF amplified cancers; following treatment with a selective pan-FGFR inhibitor, a patient with head and neck squamous cell carcinoma (HNSCC) and amplification of 11q13 (FGF3, FGF4, FGF19) and 12p13 (FGF6 and FGF23) experienced a radiologic CR³¹¹.

FREQUENCY & PROGNOSIS

FGF4 lies in a region of chromosome 11q13 that also contains FGF19, FGF3, and CCND1, the latter gene encoding cyclin D1, a key regulator of cell cycle progression. This chromosomal region is frequently amplified in a diverse range of malignancies¹⁵⁷ including esophageal carcinoma (35%), head and neck squamous cell carcinoma (HNSCC; 24%), breast invasive carcinoma (14%), lung squamous cell carcinoma (13%), cholangiocarcinoma (11%), bladder urothelial carcinoma (10%), stomach adenocarcinoma (7%), skin melanoma (5%), and hepatocellular carcinoma (HCC; 5%), however FGF4 amplification is rare in hematopoietic and lymphoid malignancies, reported in less than 1% of samples analyzed (cBioPortal, Jan 2022)³¹⁵⁻³¹⁶.

FINDING SUMMARY

FGF4 encodes fibroblast growth factor 4, which plays a central role in development of the teeth³¹⁷ and acts synergistically with other FGFs and SHH (sonic hedgehog) to regulate limb outgrowth in vertebrate development³¹⁸. FGF4 lies in a region of chromosome 11q13 that also contains FGF19, FGF3, and CCND1, the latter gene encoding cyclin D1, a key regulator of cell cycle progression. Amplification of FGF4, along with that of FGF3, FGF19, and CCND1, has been reported in a variety of cancers^{157,313,319-322} and may confer sensitivity to the multi-kinase inhibitor sorafenib³¹³.

gene **TP53**

ALTERATION P191fs*56 TRANSCRIPT ID NM_000546.4 CODING SEQUENCE EFFECT 570delT

VARIANT CHROMOSOMAL POSITION chr17:7578278-7578279

VARIANT ALLELE FREQUENCY (% VAF) 44.7%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib323-326 or p53 gene therapy such as SGT53³²⁷⁻³³¹. In a Phase 1 study, adavosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% and SDs in 53% of patients with solid tumors; the response rate was 21% (4/19) for patients with TP53 mutations versus 12% (4/33) for patients who were TP53 wildtype332. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 32% (30/94, 3 CR) ORR and a 73% (69/94) DCR for patients with platinumrefractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer³³³. A smaller Phase 2 trial of adavosertib in combination with carboplatin achieved a 43% (9/21, 1 CR) ORR and a 76% (16/21) DCR for patients with platinum-refractory TP53-mutated ovarian cancer³³⁴. The combination of adavosertib with paclitaxel and carboplatin for patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone³³⁵. In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/or recurrent gastric cancer experienced a 24% (6/25) ORR with adavosertib

combined with paclitaxel³³⁶. A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71% (5/7) response rate for patients with TP53 alterations337. The Phase 2 FOCUS4-C trial for patients with TP53- and RAS-mutated colorectal cancer reported improvement in PFS (3.61 vs. 1.87 months, HR=0.35, p=0.0022), but not OS (14.0 vs 12.8 months, p=0.93), following adavosertib treatment compared with active monitoring³³⁸. In a Phase 1b clinical trial of SGT-53 in combination with docetaxel for patients with solid tumors, 75% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage³³¹. Missense mutations leading to TP53 inactivation may be sensitive to therapies that reactivate mutated p53 such as eprenetapopt. In a Phase 1b trial for patients with p53-positive highgrade serous ovarian cancer, eprenetapopt combined with carboplatin and pegylated liposomal doxorubicin achieved a 52% (11/21) response rate and 100% DCR339. A Phase 1 trial of eprenetapopt with pembrolizumab for patients with solid tumors reported an ORR of 10% (3/ 29)340.

PATIENT

FREQUENCY & PROGNOSIS

TP53 is one of the most commonly mutated genes in lung cancer; mutations have been reported in 43-80% of non-small cell lung cancers (NSCLCs)^{128,130,246,341-345}, including 42-52% of lung adenocarcinomas and 58-83% of lung squamous cell carcinomas (cBioPortal, COSMIC, Feb 2022)^{55-56,128,130}. TP53 homozygous deletion has been observed in 1.4% of lung adenocarcinoma and <1% of lung squamous cell carcinoma cases (cBioPortal, Feb 2022)³¹⁵⁻³¹⁶. In one study of 55 patients with lung adenocarcinoma, TP53 alterations correlated with immunogenic features including PD-L1 expression, tumor mutation burden and neoantigen presentation; likely as a consequence of this association TP53 mutations correlated with improved clinical outcomes to PD-1 inhibitors pembrolizumab and nivolumab in

TUMOR TYPE Lung adenocarcinoma

GENOMIC FINDINGS

this study³⁴⁶. Mutations in TP₅₃ have been associated with lymph node metastasis in patients with lung adenocarcinoma³⁴⁷.

FINDING SUMMARY

Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in aggressive advanced cancers³⁴⁸. Alterations such as seen here may disrupt TP53 function or expression³⁴⁹⁻³⁵³.

POTENTIAL GERMLINE IMPLICATIONS

Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers³⁵⁴⁻³⁵⁶, including sarcomas³⁵⁷⁻³⁵⁸. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000³⁵⁹ to 1:20,000³⁵⁸. For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30³⁶⁰. In the appropriate clinical context, germline testing of TP53 is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion³⁶¹⁻³⁶⁶. CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy³⁶¹⁻³⁶². Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease³⁶⁷. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH^{365,368-369}. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH.

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

REPORT DATE

IN PATIENT'S TUMOR TYPE

ORDERED TEST #

Afatinib

Assay findings association

ERBB2 G776>VC

AREAS OF THERAPEUTIC USE

Afatinib is an irreversible kinase inhibitor that targets the kinase domains of EGFR, ERBB2/HER2, and ERBB4. It is FDA approved for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) and nonresistant EGFR mutations and for the treatment of patients with metastatic, squamous NSCLC after progression on platinum-based chemotherapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

Clinical and preclinical data support sensitivity of multiple activating mutations in ERBB2, including A775_G776insYVMA and P780_Y781insGSP, to afatinib^{104-108,123-126}. Studies have reported DCRs of 54-70% for patients with ERBB2-mutated NSCLC treated with afatinib, most of whom harbored exon 20 insertions¹⁰⁴⁻¹⁰⁸. Retrospective data suggest that ERBB2 G776>VC or P780_Y781insGSP may predict improved PFS with afatinib in patients with NSCLC as compared with ERBB2 missense mutations (HR = 0.050)¹⁰⁷.

SUPPORTING DATA

The Phase 2 NICHE trial for platinum-refractory nonsmall cell lung cancer (NSCLC) harboring ERBB2 exon 20 insertions reported a low ORR but a high DCR, with 1 PR and 7 SDs out of 13 patients; the median PFS (mPFS) and OS were 3.7 and 13 months, respectively¹⁰⁴. A retrospective study of afatinib for patients with ERBB2-mutated NSCLC, most of whom were previously

treated, reported an ORR of 16% and a DCR of 69%; the mPFS was 1.2 months for patients with A775_G776insYVMA, 7.6 months for patients with G776>VC or P780_Y781insGSP, and 3.6 months for patients with ERBB2 missense mutations¹⁰⁷. Other retrospective studies of afatinib for ERBB2-mutated lung cancer have reported similar ORRs of 13-16% and DCRs of $68\text{--}70\%^{105\text{--}106}$. A case report of a patient with lung adenocarcinoma harboring an ERBB2 V659E activating mutation demonstrated a PR of 9 months in response to afatinib as well as near resolution of a metastatic lesion in the liver³⁷⁰. In the LUX-Lung 1 Phase 2b/3 trial for patients with advanced non-small cell lung cancer (NSCLC) who previously progressed on first-generation EGFR tyrosine kinase inhibitors, afatinib treatment resulted in longer median PFS (mPFS; 3.3 vs. 1.1 months, HR=0.38) but no significant difference in median OS (mOS; 10.8 vs. 12.0 months, HR=1.08) when compared with placebo³⁷¹; similar results were observed in the single-arm LUX-Lung 4 trial in the same treatment setting³⁷². The randomized Phase 3 LUX-Lung 8 trial comparing afatinib with erlotinib as second-line therapy for advanced lung squamous cell carcinoma (SCC) reported significantly longer mOS (7.9 vs. 6.8 months, HR=0.81), significantly longer mPFS (2.6 vs. 1.9 months, HR=0.81), and higher DCR (51% vs. 40%, p=0.002) for patients treated with afatinib373. For patients who progressed on afatinib monotherapy, additional clinical benefit has been reported from afatinib combined with paclitaxel374.

Famtrastuzumab deruxtecan

Assay findings association

ERBB2 G776>VC

AREAS OF THERAPEUTIC USE

Fam-trastuzumab deruxtecan is an antibody-drug conjugate that targets the protein ERBB2/HER2 on the cell surface and delivers the cytotoxic payload DXd, which inhibits DNA topoisomerase I to induce DNA damage. Fam-trastuzumab deruxtecan is FDA approved to treat patients with HER2-positive breast cancer and gastric or gastroesophageal junction adenocarcinoma who have received prior HER2-targeted therapy. It is also approved for patients with HER2-low advanced breast cancer who have previously been treated with chemotherapy, as well as for patients with advanced ERBB2-mutated non-small cell lung cancer (NSCLC) who have received systemic therapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical data in non-small cell lung cancer (NSCLC)^{85,375}, ERBB2 missense or exon 20 insertion mutations may predict sensitivity to fam-trastuzumab

deruxtecan.

THERAPIES WITH CLINICAL BENEFIT

SUPPORTING DATA

The Phase 2 DESTINY-Lungo1 study of single-agent famtrastuzumab deruxtecan for patients with advanced metastatic ERBB2-altered non-small cell lung cancer (NSCLC) predominantly harboring exon 20 insertions reported an ORR of 55% (50/91), median duration of response of 9.3 months, median PFS of 8.2 months, and mOS of 17.8 months⁸⁵. In a similar setting evaluating famtrastuzumab deruxtecan at a slightly lower dose, the Phase 2 DESTINY-Lung-02 study reported similar efficacy with ORRs of 58% (30/52) and 43% (12/28) and median durations of response of 8.7 months and 5.9 months at doses of 5.4 mg/kg and 6.4 mg/kg, respectively³⁷⁶. Famtrastuzumab deruxtecan achieved a 40% ORR (2/5 PRs) and 80% DCR (4/5) in a retrospective analysis for patients with metastatic ERBB2-mutated/EGFR wildtype NSCLC; patients treated with other trastuzumab regimens had significantly larger tumor sizes (p=0.045)377.

© 2023 Foundation Medicine, Inc. All rights reserved.

REPORT DATE

ORDERED TEST #

THERAPIES ASSOCIATED WITH UNCLEAR RESISTANCE IN PATIENT'S TUMOR TYPE

Dacomitinib

Resistance of variant(s) to associated therapy is unclear

Assay findings association

ERBB2 G776>VC

AREAS OF THERAPEUTIC USE

Dacomitinib is a second generation irreversible tyrosine kinase inhibitor that targets the kinase domains of EGFR, ERBB2/HER2, and ERBB4/HER4. It is FDA approved for the first-line treatment of patients with metastatic non-small cell lung cancer (NSCLC) with EGFR exon 19 deletion or exon 21 L858R substitution mutations. Please see the drug label for full prescribing information.

GENE ASSOCIATION

Early phase clinical trials report anti-tumor activity of dacomitinib in advanced solid tumors with ERBB2 activating mutations^{113,378}, ERBB2 amplification³⁷⁹⁻³⁸⁰ or HER2 overexpression³⁸¹. In a prospective Phase 2 study of dacomitinib in NSCLC, the ORR was 12% in patients with ERBB2 mutations, which were mostly exon 20 insertions; objective response was observed in 2 patients with G778_P78oinsGSP and 1 patient with M774delinsWLV, but not in patients with other exon 20 insertions¹¹³. Preclinical data support reduced sensitivity of ERBB2 exon 20 insertions to dacomitinib¹²⁴⁻¹²⁶.

SUPPORTING DATA

In a Phase 2 study, 3/26 (12%) of patients with ERBB2 exon 20 mutations experienced PRs to dacomitinib treatment; the median PFS was 3 months and median OS was 9 months in this cohort¹¹³. In ERBB2-amplified NSCLC, response rates of 0/4 (0%)^{113} to 1/3 (33%)^{380} have been reported, with disease control (PR or SD) achieved in 4/9 (44%) patients total113,378,380 . A Phase 1 trial of combination dacomitinib and a MEK1/2 inhibitor for patients with KRAS-mutated CRC, NSCLC, or pancreatic cancer reported 20/36 SDs and 16 PDs, however toxicity from this combination prevented long-term treatment in this patient population³⁸². Phase 1/2 studies of dacomitinib for patients with advanced KRAS-wildtype non-small cell lung cancer (NSCLC) who had previously progressed on chemotherapy and erlotinib or gefitinib and were not selected for EGFR mutations reported ORRs of 4.6-17% (3/66-9/53), median PFS of 3-4 months, and median OS of 9-11 months380,383.

REPORT DATE

IN OTHER TUMOR TYPE

ORDERED TEST #

Adotrastuzumab emtansine

Assay findings association

ERBB2 G776>VC

AREAS OF THERAPEUTIC USE

Ado-trastuzumab emtansine (T-DM1) is an antibody-drug conjugate that targets the protein ERBB2/HER2 on the cell surface, which inhibits HER2 signaling; it also releases the cytotoxic therapy DM1 into cells, leading to cell death. T-DM1 is FDA approved to treat patients with HER2-positive (HER2+) metastatic breast cancer and disease progression on prior therapy as well as patients with HER2+ early breast cancer who have residual invasive disease after neoadjuvant taxane and trastuzumab-based treatment. Please see the drug label for full prescribing information.

GENE ASSOCIATION

ERBB2 amplification or activating mutations may predict sensitivity to T-DM1^{82,384-399}. Patients with NSCLC and various ERBB2 exon 20 insertion mutations have benefited from T-DM1^{116,387,400}.

SUPPORTING DATA

THERAPIES WITH CLINICAL BENEFIT

In a Phase 2 basket trial of T-DM1, patients with ERBB2-mutated and/or -amplified non-small cell lung cancer (NSCLC) achieved an ORR of 51% (25/49) and a median PFS of 5 months. The ERBB2-amplified cohort had an ORR of 55% (6/11), while the ERBB2-mutated cohort had an ORR of 50% (5/10). A subset of patients with tumors harboring both an ERBB2 mutation and amplification had an ORR of 50% (5/10)386. Another Phase 2 trial of T-DM1 in chemotherapy-refractory ERBB2-positive NSCLC reported an ORR of 6.7% and a median PFS of 2.0 months; patients with ERBB2 expression experienced an ORR of 0% (0/8) and a DCR of 38% (3/8), whereas patients with ERBB2 exon 20 insertion mutations experienced an ORR of 14% (1/7) and DCR of 71% (5/7)387. A patient with ERBB2-amplified and A775_G776insYVMA-mutated NSCLC experienced disease progression on 2 prior lines of chemotherapy but experienced a rapid and durable response to T-DM1121,400 .

Neratinib

Assay findings association

ERBB2 G776>VC

AREAS OF THERAPEUTIC USE

Neratinib is an irreversible tyrosine kinase inhibitor that targets EGFR, ERBB2/HER2, and ERBB4. It is FDA approved for the extended adjuvant treatment of early-stage HER2-positive (HER2+) breast cancer following adjuvant trastuzumab. Neratinib is also approved in combination with capecitabine to treat patients with advanced or metastatic HER2+ breast cancer who have been previously treated with 2 or more anti-HER2 regimens. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of extensive clinical^{109-112,401-403} and preclinical^{142,404-407} evidence, ERBB2 amplification or activating mutations may confer sensitivity to neratinib. A Phase 2 trial of neratinib in patients with solid tumors reported 1 CR, 1 PR, and 14 SD out of 25 evaluable patients with ERBB2 exon 20 insertion mutations, with both objective responses in patients with breast cancer¹¹¹. Preclinical data support reduced sensitivity of ERBB2 exon 20 insertions to neratinib¹²⁴⁻¹²⁵.

SUPPORTING DATA

In the Phase 2 SUMMIT trial of neratinib in patients with ERBB2 or ERBB3 mutations, the ORR was 3.8% (1/26) and the median PFS was 5.5 months for patients with NSCLC, most of whom harbored ERBB2 exon 20 insertions; PR was observed in one patient with L755S mutation¹¹¹. A Phase 2 study in ERBB2-mutated NSCLC reported objective response and clinical benefit in 19% (8/43) and 51% (22/43) of patients treated with neratinib plus the mTOR inhibitor temsirolimus, compared with 0% (o/17) and 35% (6/17) for patients treated with single-agent neratinib; exon 20 insertions were the most common ERBB2 mutation⁴⁰⁸⁻⁴⁰⁹.

REPORT DATE

ORDERED TEST #

THERAPIES WITH CLINICAL BENEFIT IN OTHER TUMOR TYPE

Trastuzumab

Assay findings association

ERBB2 G776>VC

AREAS OF THERAPEUTIC USE

Trastuzumab is a monoclonal antibody that targets the protein ERBB2/HER2. It is FDA approved as monotherapy and in combination with chemotherapy for HER2+ metastatic gastric or gastroesophageal adenocarcinoma. Trastuzumab biosimilars are also FDA approved for these indications. Please see the drug label(s) for full prescribing information.

GENE ASSOCIATION

Trastuzumab-involving regimens elicited significant responses in patients with certain ERBB2 mutations^{76-77,94,121,410-411}. Patients with NSCLC and ERBB2 exon 20 insertions, including A775_G776insYVMA and G776>VC, have benefited from treatment with trastuzumab^{76-77,121,411-412}, with reported DCRs of 75–96% for trastuzumab in combination with chemotherapy^{77,121}.

SUPPORTING DATA

In a Phase 2a basket trial (MyPathway), trastuzumab plus

pertuzumab treatment in non-small cell lung cancer (NSCLC) elicited PRs in 2/16 patients with ERBB2 amplification or overexpression and in 3/14 patients with HER2 mutation⁴¹³. A Phase 2 trial of docetaxel with trastuzumab for the treatment of NSCLC reported PRs for 8% of patients, although the response did not correlate with HER2 status as assessed by immunohistochemistry⁴¹⁴. Another Phase 2 study of 169

patients with NSCLC reported an ORR of 23% (7/30) with combination therapy of docetaxel and trastuzumab and 32% (11/34) with paclitaxel and trastuzumab; HER2 expression did not impact the results of this study⁴¹⁵. A patient with lung adenocarcinoma that was HER-positive by FISH and harbored an ERBB2 G776L mutation experienced a PR on trastuzumab and paclitaxel⁷⁵. In a retrospective analysis of patients with NSCLC harboring ERBB2 exon 20 insertion mutations, disease control was reported in 93% of patients (13/14) treated with trastuzumab in combination with chemotherapy⁷⁷.

Trastuzumab + Pertuzumab

Assay findings association

ERBB2 G776>VC

AREAS OF THERAPEUTIC USE

Trastuzumab is a monoclonal antibody that targets ERBB2/HER2, and pertuzumab is a monoclonal antibody that interferes with the interaction between HER2 and ERBB3. These therapies are FDA approved in combination for the treatment of patients with HER2-positive (HER2+) metastatic breast cancer who have not received prior chemotherapy or HER2-targeted therapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

On the basis of clinical studies in multiple tumor types, ERBB2 amplification or activating mutations may predict sensitivity to trastuzumab in combination with pertuzumab^{79,413,416-420}.

SUPPORTING DATA

In the Phase 2a MyPathway basket trial, trastuzumab plus pertuzumab treatment in patients with ERBB2-positive (amplification or overexpression) non-small cell lung cancer (NSCLC) achieved an ORR of 30% (7/27)^{413,421}. The combination of trastuzumab, pertuzumab, and docetaxel was evaluated in patients with ERBB2-mutated (missense mutation or exon 20 insertion) NSCLC lacking mutations in known driver genes and reported a 29% (13/45) ORR, 6.8-month median PFS, and 17.6-month median OS⁴²².

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

TUMOR TYPE Lung adenocarcinoma

CLINICAL TRIALS

ORDERED TEST #

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually updated and should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \rightarrow Geographical proximity → Later trial phase. Clinical trials listed here may have additional enrollment criteria that

may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or, visit https://www.foundationmedicine.com/genomictesting#support-services.

GENE CCND1 ALTERATION amplification	RATIONALE CCND1 amplification or overexpression may activate CDK4/6 and may predict sensitivity to	single-agent CDK4/6 inhibitors.
NCT04801966		PHASE NULL
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study		TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF
LOCATIONS: Melbourne (Australia)		
NCT05252416		PHASE 1/2
(VELA) Study of BLU-222 in Advanced Solid Tumor	S	TARGETS ER, CDK4, CDK6, CDK2
LOCATIONS: Florida, Virginia, New York, Massach	usetts, Texas	
NCT03297606		PHASE 2

Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)

TARGETS VEGFRs, ABL, SRC, ALK, ROS1, AXL, TRKA, MET, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, FLT3, CSF1R, RET, mTOR, ERBB2, MEK, **BRAF, SMO**

LOCATIONS: Kingston (Canada), Montreal (Canada), Toronto (Canada), London (Canada), Ottawa (Canada), Regina (Canada), Saskatoon (Canada), Edmonton (Canada), Vancouver (Canada)

NCT04553133	PHASE 2
PF-07104091 as a Single Agent and in Combination Therapy	TARGETS CDK6, Aromatase, CDK4, CDK2
LOCATIONS: Massachusetts, Texas, Michigan	

ORDERED TEST #

CLINICAL TRIALS

NCT02896335	PHASE 2
Palbociclib In Progressive Brain Metastases	targets CDK4, CDK6
LOCATIONS: Massachusetts	
NCT04000529	PHASE 1

Phase Ib Study of TNO155 in Combination With Spartalizumab or Ribociclib in Selected Malignancies	TARGETS PD-1, SHP2, CDK6, CDK4

LOCATIONS: Massachusetts, Barcelona (Spain), Bruxelles (Belgium), Westmead (Australia), Singapore (Singapore), Chengdu (China), Hong Kong (Hong Kong), Chuo ku (Japan)

NCT04282031	PHASE 1/2
A Study of BPI-1178 in Patients With Advanced Solid Tumor and HR+/HER2- Breast Cancer	TARGETS CDK6, CDK4, ER, Aromatase

LOCATIONS: Shanghai (China)

CLINICAL TRIALS

ORDERED TEST #

ERBB2

ALTERATION

G776>VC

GENE

RATIONALE

ERBB2 amplification or activating mutation may confer sensitivity to HER2-targeted and dual EGFR/HER2-directed therapies, and may enhance efficacy of HSP90 inhibitors. Clinical and preclinical data suggest that ERBB2 exon 20 insertions confer resistance to lapatinib and reduced sensitivity to afatinib, dacomitinib, and neratinib. However, it is unclear if ERBB2 exon 20 insertions confer reduced sensitivity to lapatinib in combination with other therapies, such as trastuzumab. Retrospective clinical data suggest that ERBB2 G776>VC or P780_Y781insGSP is associated with improved PFS on afatinib, compared with other ERBB2 mutations or exon 20 insertions. In addition, clinical data suggests reduced sensitivity of ERBB2 G776>VC to dacomitinib. Investigational agents such as poziotinib and pyrotinib, or ERBB2-targeted antibodies such as trastuzumab and T-DM1, may be more effective.

NCT05048797	PHASE 3
A Study to Investigate the Efficacy and Safety of Trastuzumab Deruxtecan as the First Treatment Option for Unresectable, Locally Advanced/Metastatic Non-Small Cell Lung Cancer With HER2 Mutations	targets PD-1, ERBB2

LOCATIONS: São Paulo (Brazil), Sao Paulo (Brazil), Barretos (Brazil), Blumenau (Brazil), Uberlândia (Brazil), Brasília (Brazil), Salvador (Brazil), New Jersey, New York

NCT04589845	PHASE 2
Tumor-Agnostic Precision Immuno-Oncology and Somatic Targeting Rational for You (TAPISTRY) Platform Study	TARGETS TRKB, ALK, TRKC, ROS1, TRKA, RET, PD-L1, AKTs, ERBB2, MDM2, PI3K- alpha, RAFs, NRAS

LOCATIONS: Sao Paulo (Brazil), Porto Alegre (Brazil), San Juan (Puerto Rico), Florida, Alabama, Georgia, Maryland, Delaware

NCT02693535	PHASE 2
TAPUR: Testing the Use of Food and Drug Administration (FDA) Approved Drugs That Target a Specific Abnormality in a Tumor Gene in People With Advanced Stage Cancer	TARGETS ALK, ROS1, AXL, TRKA, MET, TRKC, CDK4, CDK6, FLT3, VEGFRs, CSF1R, KIT, RET, mTOR, ERBB2, MEK, BRAF, PARP, PD-1, CTLA-4, EGFR, ERBB4

LOCATIONS: Florida, South Carolina, Georgia

NCT04447118	PHASE 3
Phase 3 Study of Pyrotinib Versus Docetaxel in Patients With Advanced Non-squamous NSCLC	targets
Harboring a HER2 Exon 20 Mutation Who Failed Platinum Based Chemotherapy	EGFR, ERBB2

LOCATIONS: Florida, New York, Tennessee, Texas, Malaga (Spain), Madrid (Spain), Valencia (Spain), Kansas, Pamplona (Spain)

NCT04579380	PHASE 2
Basket Study of Tucatinib and Trastuzumab in Solid Tumors With HER2 Alterations	targets ERBB2, ER

LOCATIONS: Florida, North Carolina, Georgia, South Carolina, District of Columbia, Virginia, New York, Connecticut, Massachusetts

TUMOR TYPE

Lung adenocarcinoma

CLINICAL TRIALS

NCT04644068	PHASE 1/2
Study of AZD5305 as Monotherapy and in Combination With Anti-cancer Agents in Patients With Advanced Solid Malignancies	TARGETS ERBB2, TROP2, PARP

PATIENT

LOCATIONS: New York, Texas, Sevilla (Spain), Málaga (Spain), Montreal (Canada), Toronto (Canada), Madrid (Spain), Oklahoma, Barcelona (Spain), Oxford (United Kingdom)

NCT03066206	PHASE 2
Poziotinib in EGFR Exon 20 Mutant Advanced Non-Small Cell Lung Cancer (NSCLC)	targets EGFR, ERBB2, ERBB4

LOCATIONS: Texas

NCT03297606	PHASE 2
Canadian Profiling and Targeted Agent Utilization Trial (CAPTUR)	TARGETS VEGFRS, ABL, SRC, ALK, ROS1, AXL, TRKA, MET, TRKC, DDR2, KIT, EGFR, PD-1, CTLA-4, PARP, CDK4, CDK6, FLT3, CSF1R, RET, mTOR, ERBB2, MEK, BRAF, SMO
	,

LOCATIONS: Kingston (Canada), Montreal (Canada), Toronto (Canada), London (Canada), Ottawa (Canada), Regina (Canada), Saskatoon (Canada), Edmonton (Canada), Vancouver (Canada)

NCT05246514	PHASE 2
A Single Arm Phase 2 Study to Evaluate Efficacy and Safety of Trastuzumab Deruxtecan for Patients	TARGETS
With HER2 Mutant NSCLC	ERBB2

LOCATIONS: Chengdu (China), Chongqing (China), Xi'an (China), Harbin (China), Beijing (China), Baoding (China), Changchun (China), Zhengzhou City (China), Hangzhou (China), Shenyang (China)

NCT03318939	PHASE 2
Phase 2 Study of Poziotinib in Patients With NSCLC With EGFR or HER2 Exon 20 Insertion Mutation	targets EGFR, ERBB2, ERBB4

LOCATIONS: Florida, North Carolina, Georgia, District of Columbia, Virginia, Maryland, New York

ORDERED TEST #

CLINICAL TRIALS

MEN1 NITERATION 0423N - subclonal	RATIONALE Based on limited clinical and preclinical evidence, tumors with MEN ₁ loss or inactivation may be	sensitive to CDK4/6 inhibitors.
NCT04801966		PHASE NULL
Safety and Oversight of the Individually Tailored ⁻	Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF
LOCATIONS: Melbourne (Australia)		
NCT05252416		PHASE 1/2
(VELA) Study of BLU-222 in Advanced Solid Tumo	rs	TARGETS ER, CDK4, CDK6, CDK2
LOCATIONS: Florida, Virginia, New York, Massac	husetts, Texas	
NCT04553133		PHASE 2
PF-07104091 as a Single Agent and in Combinatio	n Therapy	TARGETS CDK6, Aromatase, CDK4, CDK2
LOCATIONS: Massachusetts, Texas, Michigan		
NCT02896335		PHASE 2
Palbociclib In Progressive Brain Metastases		targets CDK4, CDK6
LOCATIONS: Massachusetts		
NCT04000529		PHASE 1
Phase Ib Study of TNO155 in Combination With Sp	partalizumab or Ribociclib in Selected Malignancies	TARGETS PD-1, SHP2, CDK6, CDK4
LOCATIONS: Massachusetts, Barcelona (Spain), Kong), Chuo ku (Japan)	Bruxelles (Belgium), Westmead (Australia), Singapore	e (Singapore), Chengdu (China), Hong Kong (Hong
NCT05159245		PHASE 2
The Finnish National Study to Facilitate Patient Ad	ccess to Targeted Anti-cancer Drugs	TARGETS BRAF, VEGFRS, RET, KIT, ERBB2, TRKB, ALK, TRKC, ROS1, TRKA, SMO, PD-L1, MEK, CDK4, CDK6
	Tampere (Finland), Kuopio (Finland)	

ORDERED TEST #

CLINICAL TRIALS

NCT04282031	PHASE 1/2
A Study of BPI-1178 in Patients With Advanced Solid Tumor and HR+/HER2- Breast Cancer	TARGETS CDK6, CDK4, ER, Aromatase

LOCATIONS: Shanghai (China)

CLINICAL TRIALS

ORDERED TEST #

GENE

MYC

ALTERATION amplification

RATIONALE

MYC overexpression may predict sensitivity to inhibition of CDKs, especially CDK1 and CDK2, of Aurora kinases, including Aurora kinase A and B, and of BET domain proteins, which are reported to downregulate MYC expression and MYCdependent transcriptional programs.

NCT05252390	PHASE 1/2
NUV-868 as Monotherapy and in Combination With Olaparib or Enzalutamide in Adult Patients With	targets
Advanced Solid Tumors	BRD4, PARP, AR

LOCATIONS: North Carolina, Virginia, Maryland, Tennessee, Texas, Michigan, Arizona, California

NCT04840589	PHASE 1
Testing the Combination of ZEN003694 and Nivolumab With or Without Ipilimumab in Solid Tumors	TARGETS PD-1, CTLA-4, BRD4, BRDT, BRD2, BRD3

LOCATIONS: Maryland, New York, Pennsylvania, Ohio

NCT04742959	PHASE 1/2
Crossover Relative Bioavailability and Dose Escalation Study of TT-00420 Tablet in Patients With Advanced Solid Tumors	TARGETS Aurora kinase A, Aurora kinase B
LOCATIONS New Jargey Teyes Ohio Illinois California	

LOCATIONS: New Jersey, Texas, Ohio, Illinois, California

NCT04553133

PF-07104091 as a Single Agent and in Combination Therapy	
--	--

LOCATIONS: Massachusetts, Texas, Michigan

NCT04555837	PHASE 1/2
Alisertib and Pembrolizumab for the Treatment of Patients With Rb-deficient Head and Neck Squamous Cell Cancer	targets Aurora kinase A, PD-1
LOCATIONS: Texas	
NCT04983810	PHASE 1/2

A Study to Investigate Fadraciclib (CYC065), in Subjects With Advanced Solid Tumors and Lymphoma	targets CDK2, CDK9

LOCATIONS: Texas, Barcelona (Spain), California, Seoul (Korea, Republic of)

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | www.rochefoundationmedicine.com PHASE 2 TARGETS

CDK6, Aromatase, CDK4, CDK2

CLINICAL TRIALS

ORDERED TEST #

NCT01434316

Veliparib and Dinaciclib in Treating Patients With Advanced Solid Tumors

LOCATIONS: Massachusetts

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | www.rochefoundationmedicine.com _____

PHASE 1

TARGETS PARP, CDK1, CDK9, CDK5, CDK2

ORDERED TEST #

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

CDK12 S1096P

PRKAR1A amplification EGFR C686Y

SOX9 amplification

GNAS T415_G423del

TSC2

V1298M

© 2023 Foundation Medicine, Inc. All rights reserved.

APPENDIX G

Genes Assayed in FoundationOne®CDx

FoundationOne CDx is designed to include genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 324 genes as well as introns of 36 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY

ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B	or WTX)
APC	AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX
AURKA	AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2
BCL6	BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1
BTG2	BTK	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1	DDR2
DIS3	DNMT3A	DOT1L	EED	EGFR	EMSY (C11orf30)	EP300	EPHA3	EPHB1
EPHB4	ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2
FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14
FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FH	FLCN	FLT1	FLT3	FOXL2	FUBP1	GABRA6	GATA3	GATA4
GATA6	GID4 (C17orf39)	GNA11	GNA13	GNAQ	GNAS	GRM3	GSK3B	H3-3A (H3F3A)
HDAC1	HGF	HNF1A	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNK1	MLH1	MPL	MRE11 (MRE11A)	MSH2	MSH3
MSH6	MST1R	MTAP	MTOR	MUTYH	МҮС	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	<i>NOTCH3</i>
NPM1	NRAS	NSD2 (WHSC1 or	MMSET)	NSD3 (WHSC1L1)	NT5C2	NTRK1	NTRK2	NTRK3
P2RY8	PALB2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)
PDGFRA	PDGFRB	PDK1	РІКЗС2В	PIK3C2G	РІКЗСА	РІКЗСВ	PIK3R1	PIM1
PMS2	POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI
PRKN (PARK2)	PTCH1	PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51
RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10
REL	RET	RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO
SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3
STK11	SUFU	SYK	ТВХЗ	ΤΕΚ	TENT5C (FAM46C)	TET2	TGFBR2
TIPARP	TNFAIP3	TNFRSF14	TP53	TSC1	TSC2	TYRO3	U2AF1	VEGFA
VHL	WT1	XPO1	XRCC2	ZNF217	ZNF703			
DNA GENE L	IST: FOR THE D	ETECTION OF	SELECT REAR	RANGEMENTS				
A 1 1/	DCI 2	000	0045	00041	00042	CD74	5650	FT 1/4

ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)
MSH2	МҮВ	МҮС	NOTCH2	NTRK1	NTRK2	NUTM1	PDGFRA	RAF1
RARA	RET	ROS1	RSPO2	SDC4	SLC34A2	TERC*	TERT**	TMPRSS2
*TERC is an N	ICRNA							

**Promoter region of TERT is interrogated

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Homologous Recombination status Loss of Heterozygosity (LOH) score Microsatellite (MS) status Tumor Mutational Burden (TMB)

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

APPENDIX

About FoundationOne®CDx

ORDERED TEST #

FoundationOne CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a,

Cipalstraat 3, 2440 Geel, Belgium. CE

ABOUT FOUNDATIONONE CDX

FoundationOne CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

Please refer to technical information for performance specification details: www.rochefoundationmedicine.com/f1cdxtech.

INTENDED USE

FoundationOne®CDx (F1CDx) is a next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alterations (indels), and copy number alterations (CNAs) in 324 genes and select gene rearrangements, as well as genomic signatures including microsatellite instability (MSI), tumor mutational burden (TMB), and for selected forms of ovarian cancer, loss of heterozygosity (LOH) score, using DNA isolated from formalin-fixed, paraffinembedded (FFPE) tumor tissue specimens. The test is intended as a companion diagnostic to identify patients who may benefit from treatment with therapies in accordance with approved therapeutic product labeling. Additionally, F1CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with solid malignant neoplasms.

TEST PRINCIPLE

FoundationOne CDx will be performed exclusively as a laboratory service using DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tumor samples. The proposed assay will employ a single DNA extraction method from routine FFPE biopsy or surgical resection specimens, 50-1000 ng of which will undergo whole-genome shotgun library construction and hybridization-based capture of all coding exons from 309 cancer-related genes, one promoter region, one non-coding (ncRNA), and select intronic regions from 34 commonly rearranged genes, 21 of which also include the coding exons. The assay therefore includes detection of alterations in a total of 324 genes.

Using an Illumina® HiSeq platform, hybrid capture–selected libraries will be sequenced to high uniform depth (targeting >500X median coverage with >99% of exons at coverage >100X). Sequence data will be processed using a customized analysis pipeline designed to accurately detect all classes of genomic alterations, including base substitutions, indels, focal copy number amplifications, homozygous gene deletions, and selected genomic rearrangements (e.g.,gene fusions). Additionally, genomic signatures including loss of heterozygosity (LOH), microsatellite instability (MSI) and tumor mutational burden (TMB) will be reported.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. The F1CDx report may be used as an aid to inform molecular eligibility for clinical trials. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne CDx identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification – equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne CDx for identifying a copy number amplification is four (4) for *ERBB2* and six (6) for all other genes. Conversely, an alteration denoted as "loss – equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that the FoundationOne CDx analytical methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials Ranking of Therapies in Summary Table Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials

Pediatric trial qualification \rightarrow Geographical proximity \rightarrow Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK[®] (NCCN[®]) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2023. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Limitations

1. In the fraction-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the F1CDx assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by

Electronically signed by Erik Williams, M.D. | Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531 Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309 Foundation Medicine, Inc. | www.rochefoundationmedicine.com © 2023 Foundation Medicine, Inc. All rights reserved. Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

analytical concordance to a PCR comparator assay using a pan-tumor FFPE tissue sample set. Patients with results categorized as "MS-Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.

- 2. TMB by F1CDx is determined by counting all synonymous and non-synonymous variants present at 5% allele frequency or greater (after filtering) and the total number is reported as mutations per megabase (mut/Mb) unit. Observed TMB is dependent on characteristics of the specific tumor focus tested for a patient (e.g., primary vs. metastatic, tumor content) and the testing platform used for the detection; therefore, observed TMB results may vary between different specimens for the same patient and between detection methodologies employed on the same sample. The TMB calculation may differ from TMB calculations used by other assays depending on variables such as the amount of genome interrogated, percentage of tumor, assay limit of detection (LoD), filtering of alterations included in the score, and the read depth and other bioinformatic test specifications. Refer to the SSED for a detailed description of these variables in FMI's TMB calculation https://www.accessdata.fda.gov/cdrh docs/ pdf17/P170019B.pdf. The clinical validity of TMB defined by this panel has been established for TMB as a qualitative output for a cut-off of 10 mutations per megabase but has not been established for TMB as a quantitative score.
- Homologous Recombination status may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas (Coleman et al., 2017; 28916367). Samples with deleterious BRCA1/2 alteration and/or Loss of Heterozygosity (LOH) score ≥ 16% will be reported as "HRD Positive" and samples with absence of these findings will be reported as "HRD Not Detected," agnostic of potential secondary BRCA1/2 reversion alterations. Certain potentially deleterious missense or small in-frame deletions in BRCA1/2 may not be classified as deleterious and, in the absence of an elevated LOH profile, samples with such mutations may be classified as "HRD Not Detected." A result of "HRD Not Detected" does not rule out the presence of a BRCA1/2 alteration or an elevated LOH profile outside the assay performance characteristic limitations.
- 4. The LOH score is determined by analyzing SNPs spaced at 1Mb intervals across the genome on the FoundationOne CDx test and

extrapolating an LOH profile, excluding armand chromosome-wide LOH segments. Detection of LOH has been verified only for ovarian cancer patients, and the LOH score result may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas. The LOH score will be reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine LOH. Performance of the LOH classification has not been established for samples below 35% tumor content. There may be potential interference of ethanol with LOH detection. The interfering effects of xylene, hemoglobin, and triglycerides on the LOH score have not been demonstrated.

- 5. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. The test does not provide information about susceptibility.
- 6. Biopsy may pose a risk to the patient when archival tissue is not available for use with the assay. The patient's physician should determine whether the patient is a candidate for biopsy.
- 7. Reflex testing to an alternative FDA approved companion diagnostic should be performed for patients who have an *ERBB2* amplification result detected with copy number equal to 4 (baseline ploidy of tumor +2) for confirmatory testing. While this result is considered negative by FoundationOne®CDx (F1CDx), in a clinical concordance study with an FDA approved FISH test, 70% (7 out of 10 samples) were positive, and 30% (3 out of 10 samples) were negative by the FISH test with an average ratio of 2.3. The frequency of *ERBB2* copy number 4 in breast cancer is estimated to be approximately 2%. Multiple references listed in https://www.mycancergenome.org/content/

https://www.hycancergenome.org/content/ disease/breast-cancer/ERBB2/238/ report the frequency of HER2 overexpression as 20% in breast cancer. Based on the F1CDx HER2 CDx concordance study, approximately 10% of HER2 amplified samples had copy number 4. Thus, total frequency is conservatively estimated to be approximately 2%.

REPORT HIGHLIGHTS

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal

APPENDIX

About FoundationOne®CDx

hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANT ALLELE FREQUENCY

Variant Allele Frequency (VAF) represents the fraction of sequencing reads in which the variant is observed. This attribute is not taken into account for therapy inclusion, clinical trial matching, or interpretive content. Caution is recommended in interpreting VAF to indicate the potential germline or somatic origin of an alteration, recognizing that tumor fraction and tumor ploidy of samples may vary.

Precision of VAF for base substitutions and indels

BASE SUBSTITUTIONS	%CV*
Repeatability	5.11 - 10.40
Reproducibility	5.95 - 12.31
INDELS	%CV*
INDELS Repeatability	%CV* 6.29 - 10.00

*Interquartile Range = 1st Quartile to 3rd Quartile

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's

© 2023 Foundation Medicine, Inc. All rights reserved.

APPENDIX

About FoundationOne®CDx

tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne CDx.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking

The median exon coverage for this sample is 855x

into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. FoundationOne CDx is performed using DNA derived from tumor, and as such germline events may not be reported.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
ткі	Tyrosine kinase inhibitor

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version (RG) 7.5.0

© 2023 Foundation Medicine, Inc. All rights reserved.

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309 Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

- 1. Histopathology (2007) pmid: 17204026
- 2. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 3. Overman MJ, et al. Lancet Oncol. (2017) pmid: 28734759
- 4. Overman MJ, et al. J. Clin. Oncol. (2018) pmid: 29355075
- 5. Shitara K, et al. Nature (2022) pmid: 35322232
- 6. Lipson EJ, et al. Clin. Cancer Res. (2013) pmid: 23169436
- 7. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 8. Rizvi NA, et al. Science (2015) pmid: 25765070
- 9. Oaknin A, et al. JAMA Oncol (2020) pmid: 33001143
- 10. Hochster et al., 2017: ASCO Abstract 673
- 11. Fleming et al., 2018; ASCO Abstract 5585
- 12. Bang et al., 2018: ASCO Abstract 92
- 13. Warth A, et al. Virchows Arch. (2016) pmid: 26637197
- 14. Ninomiva H. et al. Br. J. Cancer (2006) pmid: 16641899
- 15. Vanderwalde A, et al. Cancer Med (2018) pmid: 29436178
- **16.** Zang YS, et al. Cancer Med (2019) pmid: 31270941
- 17. Dudley JC, et al. Clin. Cancer Res. (2016) pmid: 26880610
- 18. Takamochi K, et al. Lung Cancer (2017) pmid: 28676214
- 19. Pylkkänen L, et al. Environ. Mol. Mutagen. (1997) pmid: 9329646
- **20.** Gonzalez R, et al. Ann. Oncol. (2000) pmid: 11061602
- 21. Chen XQ, et al. Nat. Med. (1996) pmid: 8782463
- 22. Merlo A, et al. Cancer Res. (1994) pmid: 8174113
- 23. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 24. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 25. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- **26.** Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
 Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 29. Jass JR, et al. J. Clin. Pathol. (1999) pmid: 10562815
- 30. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- **31.** Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- 32. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- **33.** Cristescu R, et al. Science (2018) pmid: 30309915
- Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
 Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 36. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 37. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 38. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- **39.** Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- **40.** Colli LM, et al. Cancer Res. (2016) pmid: 27197178
- Wang VE, et al. J Immunother Cancer (2017) pmid: 28923100
- Carbone DP, et al. N. Engl. J. Med. (2017) pmid: 28636851
- 43. Rizvi H, et al. J. Clin. Oncol. (2018) pmid: 29337640
- 44. Forde PM, et al. N. Engl. J. Med. (2018) pmid: 29658848
- 45. Miao D, et al. Nat. Genet. (2018) pmid: 30150660
- 46. Chae YK, et al. Clin Lung Cancer (2019) pmid: 30425022
- 47. Paz-Ares et al., 2019; ESMO Abstract LBA80
- Hellmann MD, et al. N. Engl. J. Med. (2019) pmid: 31562796
 Chalmers ZR, et al. Genome Med (2017) pmid:
- 28420421
- 50. Spigel et al., 2016; ASCO Abstract 9017

Electronically signed by Erik Williams, M.D. I

51. Xiao D, et al. Oncotarget (2016) pmid: 27009843

Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309

Foundation Medicine, Inc. | www.rochefoundationmedicine.com

52. Shim HS, et al. J Thorac Oncol (2015) pmid: 26200269

TUMOR TYPE

Lung adenocarcinoma

102. De Grève J, et al. Lung Cancer (2012) pmid: 22325357

103. Li BT, et al. Lung Cancer (2015) pmid: 26559459

30825613

pmid: 26358790

25667274

29978938

22761469

16857814

22199341

32381571

22090362

27542767

28533223

pmid: 10190311

136.

pmid: 22908275

128. Nature (2014) pmid: 25079552

130. Nature (2012) pmid: 22960745

104. Dziadziuszko R. et al. J Thorac Oncol (2019) pmid:

105. Lai WV, et al. Eur. J. Cancer (2019) pmid: 30685684

107. Fang W, et al. Oncologist (2019) pmid: 31748336

108. Yuan B, et al. Front Oncol (2020) pmid: 32477948

111. Hyman DM, et al. Nature (2018) pmid: 29420467

113. Kris MG, et al. Ann. Oncol. (2015) pmid: 25899785

116. Li BT, et al. J. Clin. Oncol. (2018) pmid: 29989854

118. Elamin YY, et al. J Clin Oncol (2021) pmid: 34550757

121. Mazières J, et al. Ann. Oncol. (2016) pmid: 26598547

119. Wang Y. et al. Ann. Oncol. (2019) pmid: 30596880

120. Zhou C, et al. J Clin Oncol (2020) pmid: 32614698

122. Lopez-Chavez A, et al. J. Clin. Oncol. (2015) pmid:

123. Greulich H, et al. Proc. Natl. Acad. Sci. U.S.A. (2012)

125. Koga T, et al. Lung Cancer (2018) pmid: 30527195

124. Robichaux JP, et al. Cancer Cell (2019) pmid: 31588020

126. Jang J, et al. Angew. Chem. Int. Ed. Engl. (2018) pmid:

127. Campbell JD, et al. Nat. Genet. (2016) pmid: 27158780

129. Jordan EJ, et al. Cancer Discov (2017) pmid: 28336552

131. Arcila ME, et al. Clin. Cancer Res. (2012) pmid:

133. Swanton C, et al. Clin. Cancer Res. (2006) pmid:

134. Nakamura H, et al. Cancer (2005) pmid: 15770690

Takenaka M, et al. Anticancer Res. (2011) pmid:

137. Gómez AM, et al. Tumour Biol. (2014) pmid: 24443268

138. Tan D, et al. Diagn. Mol. Pathol. (2003) pmid: 14639106

135. Xia Q, et al. Tumour Biol. (2012) pmid: 22736332

139. Selvaggi G. et al. Cancer (2002) pmid: 12173335

140. Wang SE, et al. Cancer Cell (2006) pmid: 16843263

141. Gilmer TM, et al. Cancer Res. (2008) pmid: 18199554

142. Bose R, et al. Cancer Discov (2013) pmid: 23220880

143. Morschhauser F, et al. Haematologica (2020) pmid:

144. Flaherty KT, et al. Clin. Cancer Res. (2012) pmid:

146. Infante JR, et al. Clin. Cancer Res. (2016) pmid:

148. Leonard JP, et al. Blood (2012) pmid: 22383795

150. Clark et al., 2019; AACR Abstract LB-010/2

151. Peguero et al., 2016; ASCO Abstract 2528

149. Dickler MN, et al. Clin. Cancer Res. (2017) pmid:

145. Finn RS, et al. Lancet Oncol. (2015) pmid: 25524798

147. Patnaik A, et al. Cancer Discov (2016) pmid: 27217383

152. Reissmann PT, et al. J. Cancer Res. Clin. Oncol. (1999)

153. Marchetti A, et al. Int. J. Cancer (1998) pmid: 9462706

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309

© 2023 Foundation Medicine, Inc. All rights reserved.

APPENDIX - PAGE 28 Of 30

132. Wang et al., 2021; AACR Abstract 2313

117. Le X, et al. J Clin Oncol (2021) pmid: 34843401

114. Jiang et al., 2019; ASCO Abstract 1001

115. Xu et al., 2020: ASCO Abstract 1003

106. Liu Z, et al. Onco Targets Ther (2018) pmid: 30425522

109. Ben-Baruch NE, et al. J Natl Compr Canc Netw (2015)

110. Ma CX, et al. Clin. Cancer Res. (2017) pmid: 28679771

112. Smyth LM, et al. Cancer Discov (2019) pmid: 31806627

APPENDIX

REPORT DATE

References

53. Govindan R, et al. Cell (2012) pmid: 22980976

PATIENT

- 54. Ding L, et al. Nature (2008) pmid: 18948947
- 55. Imielinski M, et al. Cell (2012) pmid: 22980975
- 56. Kim Y, et al. J. Clin. Oncol. (2014) pmid: 24323028
- **57.** Stein et al., 2019; DOI: 10.1200/PO.18.00376
- 58. Meng G, et al. PLoS One (2022) pmid: 35113949
- 59. Chen Y, et al. J. Exp. Clin. Cancer Res. (2019) pmid: 31088500
- 60. Yu H, et al. J Thorac Oncol (2019) pmid: 30253973
- 61. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 63. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 64. Johnson BE, et al. Science (2014) pmid: 24336570
- 65. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 67. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 68. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 69. Nature (2012) pmid: 22810696
- 70. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919
- **71.** Marabelle A, et al. Lancet Oncol. (2020) pmid: 32919526
- 72. Slamon DJ, et al. N. Engl. J. Med. (2001) pmid: 11248153
- 73. Bang YJ, et al. Lancet (2010) pmid: 20728210
- 74. Chumsri S, et al. J Natl Compr Canc Netw (2015) pmid: 26358791
- Cappuzzo F, et al. N. Engl. J. Med. (2006) pmid: 16775247
- 76. Falchook GS, et al. J Thorac Oncol (2013) pmid: 23328556
- 77. Mazières J, et al. J. Clin. Oncol. (2013) pmid: 23610105
- 78. Baselga J, et al. N. Engl. J. Med. (2012) pmid: 22149875
- 79. Swain SM, et al. N. Engl. J. Med. (2015) pmid: 25693012
- 80. Meric-Bernstam F, et al. Lancet Oncol. (2019) pmid:
- 30857956 81. Meric-Bernstam F, et al. Lancet Oncol (2022) pmid:
- 36400106
- 82. Verma S, et al. N. Engl. J. Med. (2012) pmid: 23020162
- 83. Modi S, et al. N. Engl. J. Med. (2019) pmid: 31825192
- 84. Shitara K, et al. N. Engl. J. Med. (2020) pmid: 32469182
- 85. Li BT, et al. N Engl J Med (2021) pmid: 34534430
- 86. Murthy RK, et al. N. Engl. J. Med. (2020) pmid: 31825569
- 87. Borges VF, et al. JAMA Oncol (2018) pmid: 29955792
- 88. Murthy R, et al. Lancet Oncol. (2018) pmid: 29804905
- Moulder SL, et al. Clin. Cancer Res. (2017) pmid:
- 28053022 90. Fan Y, et al. Mol Oncol (2020) pmid: 32478891
- **90.** Fall f, et al. Mol Offcol (2020) pillid. 52476691
- **91.** Cameron D, et al. Oncologist (2010) pmid: 20736298
- 92. Geyer CE, et al. N. Engl. J. Med. (2006) pmid: 17192538
- **93.** Serra V, et al. Cancer Discov (2013) pmid: 23950206 **94.** Ali SM, et al. J. Clin. Oncol. (2014) pmid: 24516025
- **95.** Conflicts T at al. Ann. On cal. (2014) print. 24310023
- **95.** Grellety T, et al. Ann. Oncol. (2016) pmid: 26487584 **96.** Vornicova O, et al. Oncologist (2014) pmid: 25085898
- **97.** Parallar (itach ANA) at al. (Clin Invest (2020) and the
- 97. Ronellenfitsch MW, et al. J Clin Invest (2020) pmid: 32017710

99. Lin NU, et al. Breast Cancer Res. Treat. (2012) pmid:

100. Schwab CL, et al. Br. J. Cancer (2014) pmid: 25268372

101. De Grève J, et al. Lung Cancer (2015) pmid: 25682316

 Hou JY, et al. Gynecol Oncol Rep (2020) pmid: 32405522

22418700

- 154. Sun W, et al. J Biomed Res (2013) pmid: 23720678
- 155. Gautschi O, et al. Lung Cancer (2007) pmid: 17070615
- 156. Elsheikh S, et al. Breast Cancer Res. Treat. (2008) pmid: 17653856
- 157. Fu M, et al. Endocrinology (2004) pmid: 15331580158. Takahashi-Yanaga F, et al. Cell. Signal. (2008) pmid:
- 18023328 159. Karnik SK, et al. Proc. Natl. Acad. Sci. U.S.A. (2005)
- pmid: 16195383 160. Bai F, et al. Mol. Cell. Biol. (2007) pmid: 17145768
- 161. Hussein N, et al. Endocr. Relat. Cancer (2008) pmid: 18310289
- 162. Gillam MP, et al. Oncogene (2015) pmid: 24531709
- 163. Gao SB, et al. Oncogene (2009) pmid: 19749796
- 164. Pei XH, et al. Cancer Res. (2007) pmid: 17409423
- **165.** Feng ZJ, et al. Oncogene (2010) pmid: 20639902 **166.** Wu Y, et al. J. Biol. Chem. (2012) pmid: 23027861
- 167. Wu f, et al. J. Biol. Criefii. (2012) pilliu. 2502/861
- 167. Hughes CM, et al. Mol. Cell (2004) pmid: 14992727168. La P, et al. Endocrinology (2004) pmid: 15044367
- **169.** La P, et al. Oncogene (2006) pmid: 16449969
- **170.** Yaguchi H, et al. Mol. Cell. Biol. (2004) pmid: 15254225
- 171. Agarwal SK, et al. Cell (1999) pmid: 9989505
- **172.** Shimazu S, et al. Cancer Sci. (2011) pmid: 21819486
- 173. Canaff L, et al. J. Clin. Endocrinol. Metab. (2012) pmid: 22090276
- 174. Landrum MJ, et al. Nucleic Acids Res. (2018) pmid: 29165669
- **175.** Wautot V, et al. Hum. Mutat. (2002) pmid: 12112656
- 176. Agarwal SK, et al. Hum. Mol. Genet. (1997) pmid: 9215689
 177. Konsen Li MA, et al. Appl. Genet. (2002) pmid: 120.405
- 177. Kouvaraki MA, et al. Arch Surg (2002) pmid: 12049533
 178. Teh BT, et al. J. Clin. Endocrinol. Metab. (1998) pmid: 9709921
- 179. Bassett JH, et al. Am. J. Hum. Genet. (1998) pmid: 9463336
- 180. Tala HP, et al. J. Endocrinol. Invest. (2006) pmid: 17185897
- Gaztambide S, et al. Minerva Endocrinol. (2013) pmid: 23435440
- 182. Sakurai A, et al. Endocr. J. (2009) pmid: 19564705
- 183. Honda M, et al. Intern. Med. (2004) pmid: 15168774184. Marini F, et al. Orphanet J Rare Dis (2006) pmid:
- 17014705
- 185. Garralda et al., 2022; ENA Abstract 7
- 186. Horiuchi D, et al. J. Exp. Med. (2012) pmid: 22430491187. Goga A, et al. Nat. Med. (2007) pmid: 17589519
- 188. Molenaar JJ, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid: 19525400
- 189. Dammert MA, et al. Nat Commun (2019) pmid: 31375684
- 190. Mollaoglu G, et al. Cancer Cell (2017) pmid: 28089889
- 191. Cardnell RJ, et al. Oncotarget (2017) pmid: 29088717
- **192.** Wang L, et al. Mol Oncol (2017) pmid: 28417568
- 193. Takahashi Y, et al. Ann. Oncol. (2015) pmid: 25632068
- 194. Li Y, et al. Thyroid (2018) pmid: 30226440
- **195.** Mahadevan D. et al. PLoS ONE (2014) pmid: 24893165
- **196.** Park SI, et al. Target Oncol (2019) pmid: 31429028
- **197.** Helfrich BA, et al. Mol. Cancer Ther. (2016) pmid: 27496133
- 198. Hook KE, et al. Mol. Cancer Ther. (2012) pmid: 22222631199. Yang D, et al. Proc. Natl. Acad. Sci. U.S.A. (2010) pmid:
- 20643922 200. He J, et al. Anticancer Drugs (2019) pmid: 30540594
- 201. Shroff EH, et al. Proc. Natl. Acad. Sci. U.S.A. (2015) pmid: 25964345

Electronically signed by Erik Williams, M.D. I

202. Effenberger M, et al. Oncotarget (2017) pmid: 29156762

Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309

Foundation Medicine, Inc. | www.rochefoundationmedicine.com

- 203. Qu X, et al. Biochem. Biophys. Res. Commun. (2018) pmid: 30103944
- 204. Xiang Y, et al. J. Clin. Invest. (2015) pmid: 25915584
- 205. Delmore JE, et al. Cell (2011) pmid: 21889194
- 206. Bandopadhayay P, et al. Clin. Cancer Res. (2014) pmid: 24297863
- 207. Lovén J, et al. Cell (2013) pmid: 23582323

PATIENT

- 208. Otto C, et al. Neoplasia (2019) pmid: 31734632
- 209. Dong LH, et al. J Hematol Oncol (2013) pmid: 23866964
- **210.** Pei Y, et al. Cancer Cell (2016) pmid: 26977882
- 211. Fu XH, et al. Acta Pharmacol. Sin. (2019) pmid: 30224636
- 212. Owonikoko TK, et al. J Thorac Oncol (2020) pmid: 31655296
- 213. Ganesan P, et al. Mol. Cancer Ther. (2014) pmid: 25253784
- 214. Pereira CB, et al. PLoS ONE (2013) pmid: 23555992
- 215. Yasojima H, et al. Eur. J. Cancer (2011) pmid: 21741827
- **216.** Arango D, et al. Cancer Res. (2001) pmid: 11406570
- 217. Bottone MG, et al. Exp. Cell Res. (2003) pmid: 14516787
- 218. Lockwood WW, et al. Oncogene (2008) pmid: 18391978
- 219. Kubokura H, et al. Ann Thorac Cardiovasc Surg (2001) pmid: 11578259
- 220. Iwakawa R, et al. Clin. Cancer Res. (2011) pmid: 21148746
- 221. Boelens MC, et al. Lung Cancer (2009) pmid: 19324446
- 222. Yokota J, et al. Oncogene (1988) pmid: 2838790
- 223. Dang CV, et al. Semin. Cancer Biol. (2006) pmid: 16904903
- 224. Nesbit CE, et al. Oncogene (1999) pmid: 10378696
- 225. Blancato J, et al. Br. J. Cancer (2004) pmid: 15083194
- 226. Fromont G, et al. Hum. Pathol. (2013) pmid: 23574779
- 227. Konecny GE, et al. Clin. Cancer Res. (2011) pmid: 21278246
- 228. Katsumi Y, et al. Biochem. Biophys. Res. Commun. (2011) pmid: 21871868
- 229. Cen L, et al. Neuro-oncology (2012) pmid: 22711607
- 230. Logan JE, et al. Anticancer Res. (2013) pmid: 23898052
- 231. Fennell DA, et al. Lancet Oncol (2022) pmid: 35157829
- **232.** Elvin JA, et al. Oncologist (2017) pmid: 28283584
- 233. Gao J, et al. Curr Oncol (2015) pmid: 26715889
- 234. Gopalan et al., 2014; ASCO Abstract 8077
- 235. Konecny et al., 2016; ASCO Abstract 5557
- 236. DeMichele A, et al. Clin. Cancer Res. (2015) pmid: 25501126
- 237. Johnson DB, et al. Oncologist (2014) pmid: 24797823
- 238. Van Maerken T, et al. Mol. Cancer Ther. (2011) pmid: 21460101
- 239. Gamble LD, et al. Oncogene (2012) pmid: 21725357
- 240. Shapiro et al., 2013; ASCO Abstract 2500
- 241. Dickson MA, et al. J. Clin. Oncol. (2013) pmid: 23569312
- 242. Doxtader EE, et al. Hum. Pathol. (2012) pmid: 21840041
- 243. Gazzeri S, et al. Oncogene (1998) pmid: 9484839
- 244. Kratzke RA, et al. Cancer Res. (1996) pmid: 8758904
- 245. Lee JU, et al. Tuberc Respir Dis (Seoul) (2012) pmid:
- 23101020 246. Cortot AB, et al. Clin Lung Cancer (2014) pmid: 24169260
- 247. Mounawar M, et al. Cancer Res. (2007) pmid: 17575133
- 248. Zhao Y, et al. Clin Lung Cancer (2011) pmid: 21889114
- 249. Kawabuchi B, et al. Int. J. Cancer (1999) pmid: 9988232
- 250. Xing XB, et al. PLoS ONE (2013) pmid: 23805242
- 251. Lou-Qian Z, et al. PLoS ONE (2013) pmid: 23372805
- 252. Quelle DE, et al. Cell (1995) pmid: 8521522
- 253. Mutat. Res. (2005) pmid: 15878778
- 254. Oncogene (1999) pmid: 10498883

255. Sherr CJ, et al. Cold Spring Harb. Symp. Quant. Biol. (2005) pmid: 16869746

APPENDIX

REPORT DATE

References

TUMOR TYPE

Lung adenocarcinoma

256. Ozenne P, et al. Int. J. Cancer (2010) pmid: 20549699
257. Ruas M, et al. Oncogene (1999) pmid: 10498896
258. Jones R, et al. Cancer Res. (2007) pmid: 17909018

259. Haferkamp S, et al. Aging Cell (2008) pmid: 18843795

260. Huot TJ, et al. Mol. Cell. Biol. (2002) pmid: 12417717

261. Rizos H, et al. J. Biol. Chem. (2001) pmid: 11518711

262. Gombart AF, et al. Leukemia (1997) pmid: 9324288

264. Parry D, et al. Mol. Cell. Biol. (1996) pmid: 8668202

267. Poi MJ, et al. Mol. Carcinog. (2001) pmid: 11255261

269. Kannengiesser C, et al. Hum. Mutat. (2009) pmid:

270. Lal G, et al. Genes Chromosomes Cancer (2000) pmid:

268. Byeon IJ, et al. Mol. Cell (1998) pmid: 9660926

271. Koh J, et al. Nature (1995) pmid: 7777061

272. McKenzie HA, et al. Hum. Mutat. (2010) pmid:

273. Miller PJ, et al. Hum. Mutat. (2011) pmid: 21462282

274. Kutscher CL, et al. Physiol. Behav. (1977) pmid: 905385

275. Scaini MC, et al. Hum. Mutat. (2014) pmid: 24659262

277. Walker GJ, et al. Int. J. Cancer (1999) pmid: 10389768

276. Jenkins NC, et al. J. Invest. Dermatol. (2013) pmid:

278. Rutter JL, et al. Oncogene (2003) pmid: 12853981

280. Zhang Y, et al. Mol. Cell (1999) pmid: 10360174

281. Zhang Y. et al. Cell (1998) pmid: 9529249

284. Adv Exp Med Biol (2010) pmid: 20687502

279. Itahana K, et al. Cancer Cell (2008) pmid: 18538737

282. Jafri M, et al. Cancer Discov (2015) pmid: 25873077

283. Whelan AJ, et al. N Engl J Med (1995) pmid: 7666917

285. Hogg D, et al. J Cutan Med Surg (1998) pmid: 9479083

286. De Unamuno B, et al. Melanoma Res (2018) pmid:

287. Soura E, et al. J Am Acad Dermatol (2016) pmid:

288. Huerta C, et al. Acta Derm Venereol (2018) pmid:

289. Kaufman DK, et al. Neurology (1993) pmid: 8414022

290. Bahuau M, et al. Cancer Res (1998) pmid: 9622062

291. Chan AK, et al. Clin Neuropathol () pmid: 28699883

292. Kim RD, et al. Cancer Discov (2019) pmid: 31575541

295. Kaibori M, et al. Oncotarget (2016) pmid: 27384874

296. Kanzaki H, et al. Sci Rep (2021) pmid: 33674622

298. Zehir A, et al. Nat. Med. (2017) pmid: 28481359

299. Robertson AG, et al. Cell (2017) pmid: 28988769

300. Miura S, et al. BMC Cancer (2012) pmid: 22309595

301. Kang HJ, et al. Liver Cancer (2019) pmid: 30815392

303. Gao L, et al. Oncogene (2019) pmid: 30518874

305. Xie MH, et al. Cytokine (1999) pmid: 10525310

304. Li F, et al. Oncogene (2020) pmid: 32111983

307. Int. J. Oncol. (2002) pmid: 12429977

302. Nagamatsu H, et al. Prostate (2015) pmid: 25854696

306. Hagel M, et al. Cancer Discov (2015) pmid: 25776529

© 2023 Foundation Medicine, Inc. All rights reserved.

APPENDIX - PAGE 29 Of 30

308. Kan Z, et al. Genome Res. (2013) pmid: 23788652

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309

309. Caruso S, et al. Gastroenterology (2019) pmid:

297. Dumbrava EI, et al. JCO Precis Oncol (2018) pmid:

293. Chan et al., 2017: AACR Abstract CT106

294. Macarulla et al., 2021; ASCO Abstract 4090

265. Greenblatt MS, et al. Oncogene (2003) pmid: 12606942

266. Yarbrough WG, et al. J. Natl. Cancer Inst. (1999) pmid:

263. Yang R, et al. Cancer Res. (1995) pmid: 7780957

10491434

19260062

10719365

20340136

23190892

29543703

26892650

29405243

31123723

31063779

- 310. Sawey ET, et al. Cancer Cell (2011) pmid: 21397858
- **311.** Dumbrava et al., 2018; doi/full/10.1200/PO.18.00100
- **312.** Tekin M, et al. Am. J. Hum. Genet. (2007) pmid: 17236138
- **313.** Arao T, et al. Hepatology (2013) pmid: 22890726
- **314.** Yamada T, et al. BMC Cancer (2015) pmid: 25885470
- **315.** Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- **316.** Gao J, et al. Sci Signal (2013) pmid: 23550210
- 317. Kratochwil K, et al. Genes Dev. (2002) pmid: 12502739
- **318.** Scherz PJ, et al. Science (2004) pmid: 15256670
- Zaharieva BM, et al. J. Pathol. (2003) pmid: 14648664
 Arai H, et al. Cancer Genet. Cytogenet. (2003) pmid: 14499691
- 321. Ribeiro IP, et al. Tumour Biol. (2014) pmid: 24477574
- 322. Schulze K, et al. Nat. Genet. (2015) pmid: 25822088
- 323. Hirai H, et al. Cancer Biol. Ther. (2010) pmid: 20107315
- **324.** Bridges KA, et al. Clin. Cancer Res. (2011) pmid: 21799033
- **325.** Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid: 21389100
- **326.** Osman AA, et al. Mol. Cancer Ther. (2015) pmid: 25504633
- 327. Xu L, et al. Mol. Cancer Ther. (2002) pmid: 12489850
- 328. Xu L, et al. Mol. Med. (2001) pmid: 11713371
 329. Camp ER, et al. Cancer Gene Ther. (2013) pmid: 23470564
- 330. Kim SS, et al. Nanomedicine (2015) pmid: 25240597
- 331. Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628
- 332. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554
- 333. Moore et al., 2019; ASCO Abstract 5513
- 334. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27998224
- **335.** Oza et al., 2015; ASCO Abstract 5506
- **336.** Lee J, et al. Cancer Discov (2019) pmid: 31315834 **337.** Méndez E, et al. Clin. Cancer Res. (2018) pmid:
- 29535125
- 338. Seligmann JF, et al. J Clin Oncol (2021) pmid: 34538072
- 339. Gourley et al., 2016; ASCO Abstract 5571
- 340. Park H, et al. ESMO Open (2022) pmid: 36084396
 341. Mogi A, et al. J. Biomed. Biotechnol. (2011) pmid: 21331359
- 342. Tekpli X, et al. Int. J. Cancer (2013) pmid: 23011884
- **343.** Vignot S, et al. J. Clin. Oncol. (2013) pmid: 23630207
- **344.** Maeng CH, et al. Anticancer Res. (2013) pmid: 24222160

Electronically signed by Frik Williams, M.D. I

Julia Elvin, M.D., Ph.D., Laboratory Director CLIA: 22D2027531

Nimesh R. Patel, M.D., Laboratory Director CLIA: 34D2044309

Foundation Medicine, Inc. | www.rochefoundationmedicine.com

- 345. Itakura M, et al. Br. J. Cancer (2013) pmid: 23922113
- 346. Dong ZY, et al. Clin. Cancer Res. (2017) pmid: 28039262

347. Seo JS, et al. Genome Res. (2012) pmid: 22975805

PATIENT

- **348.** Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675 **349.** Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid:
- 18410249 **350.** Kato S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid:
- 12826609 351. Kamada R, et al. J. Biol. Chem. (2011) pmid: 20978130
- 352. Zerdoumi Y, et al. Hum. Mol. Genet. (2017) pmid: 28472496
- **353.** Yamada H, et al. Carcinogenesis (2007) pmid: 17690113
- **354.** Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- 355. Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100
- **356.** Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev.
- (2001) pmid: 11219776
- **357.** Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316 **358.** Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid:
- 19204208 359. Lalloo F, et al. Lancet (2003) pmid: 12672316
- **360.** Mandelker D. et al. Ann. Oncol. (2019) pmid: 31050713
- **361.** Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
- **362.** Genovese G, et al. N. Engl. J. Med. (2014) pmid:
- 25426838
- 363. Xie M, et al. Nat. Med. (2014) pmid: 25326804
- 364. Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid: 28669404
- 365. Severson EA, et al. Blood (2018) pmid: 29678827
- 366. Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 367. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- 368. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 369. Razavi P, et al. Nat. Med. (2019) pmid: 31768066
- **370.** Chang et al., 2020; DOI: 10.1200/PO.20.00114 JCO Precision Oncology
- **371.** Miller VA, et al. Lancet Oncol. (2012) pmid: 22452896
- 372. Katakami N, et al. J. Clin. Oncol. (2013) pmid: 23816963
- 373. Soria JC, et al. Lancet Oncol. (2015) pmid: 26156651
- 374. Schuler M, et al. Ann. Oncol. (2016) pmid: 26646759
- 375. Tsurutani J, et al. Cancer Discov (2020) pmid: 32213540
- 376. Goto et al., 2022; ESMO Abstract LBA55

32147669

- 377. Waliany S, et al. Clin Lung Cancer (2022) pmid:
- 35753988
- **378.** Jänne PA, et al. Clin. Cancer Res. (2011) pmid: 21220471
- 379. Kim HS, et al. Clin. Cancer Res. (2015) pmid: 25424851
- 380. Reckamp KL, et al. Cancer (2014) pmid: 24501009
- **381.** Oh DY, et al. Gastric Cancer (2016) pmid: 26581547 **382.** van Geel RMJM, et al. Br. J. Cancer (2020) pmid:

383. Park K, et al. J Thorac Oncol (2014) pmid: 25521398384. Jhaveri KL, et al. Ann. Oncol. (2019) pmid: 31504139

APPENDIX

REPORT DATE

References

385. Li et al., 2018; ASCO Abstract 2502

TUMOR TYPE

Lung adenocarcinoma

- 386. Li BT, et al. Cancer Discov (2020) pmid: 32213539
- 387. Hotta K, et al. J Thorac Oncol (2018) pmid: 29313813
- 388. Krop IE, et al. Lancet Oncol. (2014) pmid: 24793816
- 389. Welslau M, et al. Cancer (2014) pmid: 24222194
- 390. Krop IE, et al. J. Clin. Oncol. (2012) pmid: 22649126
- **391.** Burris HA, et al. J. Clin. Oncol. (2011) pmid: 21172893
- 392. Jhaveri et al., 2018; ASCO Abstract 100
- **393.** Baselga J, et al. Clin. Cancer Res. (2016) pmid: 26920887
- 394. Perez EA, et al. J. Clin. Oncol. (2017) pmid: 28056202
- 395. Hurvitz SA, et al. J. Clin. Oncol. (2013) pmid: 23382472
- **396.** von Minckwitz G, et al. N. Engl. J. Med. (2019) pmid: 30516102
- 397. Hurvitz SA, et al. J. Clin. Oncol. (2019) pmid: 31157583
- **398.** Martin M. et al. Ann. Oncol. (2016) pmid: 27052654
- 399. Mondaca S, et al. JCO Precis Oncol (2019) pmid: 32923849
- 400. Weiler D, et al. J Thorac Oncol (2015) pmid: 25789838
- 401. Li et al., 2020; WCLC Abstract FP14.15
- **402.** Chan A, et al. Lancet Oncol. (2016) pmid: 26874901
- 403. Park JW, et al. N. Engl. J. Med. (2016) pmid: 27406346
- 404. Schwab CL, et al. Gynecol. Oncol. (2015) pmid: 26260909
- 405. Menderes G, et al. Med. Oncol. (2017) pmid: 28397106
- 406. Hu Z, et al. Oncotarget (2015) pmid: 26375550
- 407. Kavuri SM, et al. Cancer Discov (2015) pmid: 26243863
- 408. Gandhi et al. 2017; WCLC Abstract MA04.02
- **409.** Gandhi L, et al. J. Clin. Oncol. (2014) pmid: 24323026

413. Hainsworth JD, et al. J. Clin. Oncol. (2018) pmid:

415. Krug LM, et al. Cancer (2005) pmid: 16208701

29320312

28581356

410. Wang K, et al. Clin. Cancer Res. (2016) pmid: 27334835
411. Tomizawa K, et al. Lung Cancer (2011) pmid: 21353324
412. Chuang JC, et al. J Thorac Oncol (2017) pmid: 28167203

414. Lara PN, et al. Clin Lung Cancer (2004) pmid: 14967075

416. Hurvitz SA, et al. Lancet Oncol. (2018) pmid: 29175149

417. von Minckwitz G, et al. N. Engl. J. Med. (2017) pmid:

418. Swain SM, et al. Ann Oncol (2018) pmid: 29253081

419. Gianni L, et al. Lancet Oncol. (2016) pmid: 27179402

420. Shao Z, et al. JAMA Oncol (2020) pmid: 31647503

421. Meric-Bernstam et al., 2021; ASCO Abstract 3004

422. Mazieres J, et al. J Clin Oncol (2022) pmid: 35073148

© 2023 Foundation Medicine, Inc. All rights reserved.

APPENDIX - PAGE 30 Of 30

Sample Preparation: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309

Post-Sequencing Analysis: 150 Second St., 1st Floor. Cambridge, MA 02141 · CLIA: 22D2027531

Sample Analysis: 7010 Kit Creek Road, Morrisville, NC 27560 · CLIA: 34D2044309